DAMAGE EVALUATION AND CORRELATION TO TENSILE STRENGTH AS A FUNCTION OF CONSOLIDATION PRESSURE FOR UHMWPE

Sohaib Ahmad Abu Obaid¹, Arda Ozdemir¹, Molla Ali¹, Sagar M. Doshi, Ph.D.¹, Joseph M. Deitzel, Ph.D.¹, Prof. John W. Gillespie Jr.¹ University of Delaware | Center for Composite Materials¹

Introduction

UHMWPE, also known as Ultra-High-Molecular-Weight Polyethylene, is both strong and lightweight. It's durable and offers protection, which makes it perfect for high impact uses

- Protective Uses: Widely used in protective gear like helmets, vests, and vehicle armor due to its ability to absorb and distribute energy.
- Versatile: Used in various industries light-weight needing robust, materials.

Objective

Evaluation of the influence of processing parameters (applied pressure) on tensile strength of HB210 Composites

Specimen Fabrication Tensile Testing

	Applied Pressure	Temperature
Batch 1	0 ksi	RT (unprocessed)
Batch 2	3 ksi	125 C
Batch 3	6.5 ksi	125 C
Batch 4	8.25 ksi	125 C
Batch 5	10 ksi	125 C

MPa ŋgtŀ

Balancing Pressure for Optimal Strength

-0-ksi,	3-ksi	6.5-ksi	8.25-ksi	10-ksi
trength,	Strength,	Strength,	Strength,	Strength,
MPa	MPa	MPa	MPa	MPa
943±45	1169±78	1228±54	1223±52	1179±63

0 ksi (No Pressure)

Image shows unconsolidated fibers with minimal damage

We investigated the influence of applied UHMWPE composite on pressure strength. Two competing mechanisms – compaction and damage due to pressure.

Acknowledgements

This research was sponsored by the Army Research Laboratory through Physics of Soldier Protection Program and accomplished under Cooperative Agreement was Number W911NF-23-2-0022.

NIVERSITY OF ELAWARE_®

CENTER FOR **COMPOSITE MATERIALS**

3 ksi: Increasing strength due to compaction (removes air).

10 ksi: High pressure compacts more, but introduces more damage, which affects overall strength.

10 ksi compacted TM4000 0001 5kV 10.0mm X1.00k Mix L 07/16/2024 15:55 50.0μm

Conclusions

Dr. Ahmad AbuObaid, Dr. Steve Sauerbrunn, John Thiravong, Touy Thiravong, Ted Lake, Art Yiournas and CCM family.