COMPACT AND FAST-SCANNING PASSIVE mmWAVE IMAGING TESTBED

Furdeen Hasan, (BCpE)^{1,2}, Gregg Marella, (BEE)^{1,2}, Thomas Dillon, (Ph.D)², Mark Mirotznik, Ph.D², Vishal Saxena, Ph.D² University of Delaware | Center for Composite Materials¹ | Department of Electrical & Computer Engineering²

Introduction

- Passive millimeter wave (mmWave) imaging technology can detect ambient radiation in millimeter wavelengths (30-300 GHz) on the electromagnetic (EM) spectrum.
- This technology is used to detect differences in thermal emissions from a distance, useful in applications such as airport security or medial diagnostics.
- The equipment used in the experimental setup, is a COTS Radiometer from Farran, operating in the W-band of the EM spectrum (75-110 GHz).

Fig. 1 Farran Radiometer block diagram [1] M. Sostronek, R. Beresik, and M. Matejcek, "A W-band Imaging Radiometer measurement in near field of antenna," 2018 New Trends in Signal Processing (NTSP), Oct. 2018. doi:10.23919/ntsp.2018.8524067

• *Fig. 1* illustrates the COTS Radiometer's low noise amplification (LNA) circuitry to detect small voltage differences.

Fig. 2 displays a passive mmWave image of a person with a concealed handgun and ceramic knife.

Fig. 2 NIST PmmWI image https://www.nist.gov/programs-projects/terahertz-imaging-and-sources

Project Objective

- Current mmWave imagers are expensive, immobile, and oftentimes time-consuming.
- **Objective:** create a cost-efficient, mobile, passive mmWave imager to produce highquality and efficient scans.

Methodology

- Incorporated a Raspberry Pi single board computer (SBC) for system control.
- Utilized a three axis linear stage to create a continuous, back-and-forth, squareplane motion, comprehensively capturing mmWave data.
- Converted the analog output from the Farran Radiometer to a digital signal using an analog to digital converter (ADC), creating discrete data points that aligned with real-time scanning positions.
- Included a Rexolite, aspherical lens designed for W-band operation, as seen in *Fig.* 3.

• The custom designed lens was determined to be in focus at 12 inches in front of the radiometer.

Fig. 3 Focus-enhancing dielectric lens

Fig. 4 System diagram of the experimental setup

- Wrote Python scripts to control system operations including the linear actuator movement, data acquisition, and visualization.
- Using CAD software, designed and 3D printed custom mounting components to assemble the experimental setup.

Fig. 5 Experimental setup with a passive mmWave source target

• In *Fig. 5*, the passive mmWave system is compiled onto a compact, rollable cart for increased mobility.

Results

 Data processing was done using Python libraries including NumPy for numerical computations, SciPy for data smoothing, and Seaborn for data visualization.

Fig. 6 Active source mmWave experimental image

Data represented in *Fig.* 6 illustrates a scan of an active mmWave source, which creates a clear contrast between the source and its surroundings.

Acknowledgements

This material is based upon work supported by the Army Contracting Command, Aberdeen Proving Ground, Edgewood Contracting Division (ACC APG ECD) under Contract No. W911SR-22-C-0042. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the ACC APG ECD.

CENTER FOR **COMPOSITE MATERIALS**

• The experimental setup in *Fig. 5* yielded the heatmap in *Fig.* 7. Fig. 7 conveys contrasts in ambient temperatures due to the metal sheet, reflecting the sky at a colder temperature.

Fig. 7 Passive mmWave source target experimental image

Future Work

Expand the Passive mmWave Imager's use to image passive targets with more complex designs.

• Incorporate chopping, using a pin-switch, to improve the signal to noise ratio. Refine data display by removing

invaluable data points.

Further increase portability by designing a casing and implementing a tripod for mobility.

> Fig. 8 depicts a passive mmWave imager, mounted to a tripod, to create a mobile device capable of operating on different terrains.

Fig. 8 Thruvision Passive TAC16 mmWave Imager https://thruvision.com/resources/#datasheets/