Additive Manufacturing of High Temperature Polymer Composites

Soodabeh (Sophie) Sharafi, (Ph.D.M.E.)¹, Prof. Michael Santare¹, Prof. Suresh G. Advani¹, John Gerdes²
University of Delaware | Center for Composite Materials | Department of Mechanical Engineering¹ | DEVCOM ARL, Weapons Sciences Division²

Introduction
Processing PAEK/CF polymers

• PAEK family: high performance thermoplastics act like metals
• Aid in weight reduction in aerospace industry
• CF addition : Improved stiffness, thermal and electrical conductivity
• Require high processing temperature

1) Traditional Manufacturing methods

2) Additive manufacturing PAEK/CF

Additive Manufacturing
Machine features and Material set-up

Research Objective
• Identify parameters influence fracture toughness
• Develop physic-based model to predict mechanical properties
• DOE and optimize processing parameters
• Identify multi scale effect of processing parameters on Fracture Toughness

Achievements : Multiscale Effects
Experimental Set Up
• 5 dog bone V type ASTM samples are made for each process condition.
• The tensile tests were performed using an Instron 4448 machine with a 10 kN loadcell capacity at a rate of 1 mm/min

Macro-scale: Performance

Micro-scale: Void Shape and Sizes

Roughness: 2) Microscopy

Achievements : Offline Design of Experiment (DOE)

Change G-code -> solve

Conclusion
Multiscale modeling -> design for any target industry
• Toughness → porosity, void shape and size
• Strength → porosity and bond strength
• Process(450,160,90<) → ductile fracture with highest toughness

Reference

Acknowledgements
Research was sponsored by the U.S. Army CCDC Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-18-2-0299.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.