
Introduction 
• Composite materials are used 

extensively in the aerospace industry 

• Provide weight reduction and 
strength and stiffness tailoring

• Tow-steering allows local stiffness 
tailoring and possibly more weight 
reduction 

• Also introduces local mechanical 
coupling

• Buckling load is an important design 
consideration 

• Rayleigh-Ritz method has been used 
to predicted
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Isotropic Case
• For unsymmetric cross-ply laminates:
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• Timoshenko and Gere1 simply 
supported steel plate under uniform 
axial compression

• Results compared with nondimensional 
buckling coefficient 𝑘𝑘

Mechanical Coupling
• Complicates buckling analysis and 

requires more accurate assumed 
displacement functions

• For antisymmetric angle-ply
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• Assumed displacement function
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• Compared assumed displacement 
functions on different laminates2

• Hercules AS4/3501-6 graphite/epoxy 
• Isolated certain coupling terms

Future Work
• Finalize validation for mechanical coupling 

cases
• Rework problem to solve for 𝑢𝑢 and 𝑣𝑣 to 

compare to assumed displacement 
functions

• Incorporate tow-steering
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• Fiber angle at panel center: 𝑇𝑇0
• Fiber angle at panel ends: 𝑇𝑇1

• Investigate Rayleigh-Ritz effect on 
capturing local mechanical coupling
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Rayleigh Ritz Method
• Assume displacement functions

𝑢𝑢 𝑚𝑚,𝑛𝑛 , 𝑣𝑣 𝑚𝑚,𝑛𝑛 , 𝑤𝑤(𝑚𝑚,𝑛𝑛)

• Minimize total potential energy (Π)
Π = 𝑈𝑈 + 𝑉𝑉

• Plate’s strain energy: 𝑈𝑈

• Energy from external forces: 𝑉𝑉
𝜕𝜕Π
𝜕𝜕𝑆𝑆𝑚𝑚𝑛𝑛

= 0

• 𝑆𝑆𝑚𝑚𝑛𝑛 are unknowns in 𝑢𝑢, 𝑣𝑣,𝑤𝑤

• Solve eigenproblem 
𝐿𝐿 − 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑅𝑅 𝑆𝑆 = {0}

• Eigenvalue – Critical buckling load

• Eigenvector – Mode shape
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• 𝐸𝐸 = 206.8 𝐺𝐺𝐺a

• 𝜈𝜈 = 0.3 

• ⁄𝑏𝑏 ℎ = 100

Nondimensional buckling coefficient 𝑘𝑘 for various 
aspect ratios

𝑎𝑎/𝑏𝑏 0.4 0.6 0.8 1.0
Timoshenko & Gere
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Laminates and associated coupling terms
Laminate Coupling Terms

Timoshenko None
[ ⁄03 ⁄903 ⁄03 903] 𝐵𝐵11,𝐵𝐵12,𝐵𝐵22

[ ⁄02 ⁄452 ⁄02 ⁄452 02] 𝐴𝐴16,𝐴𝐴26,𝐷𝐷16,𝐷𝐷26
[ ⁄02 ⁄452 ⁄02 ⁄−452 02] 𝐵𝐵16,𝐵𝐵26

[ ⁄06 456] Full ABD

Nondimensional buckling coefficient 𝑘𝑘
Laminate Bogetti Cross-Ply Angle-Ply

Timoshenko 4.00 4.00 4.00
[ ⁄03 ⁄903 ⁄03 903] 1.02 1.02 1.16

[ ⁄02 ⁄452 ⁄02 ⁄452 02] 1.30 1.30 1.30
[ ⁄02 ⁄452 ⁄02 ⁄−452 02] 1.13 1.28 1.13

[ ⁄06 456] 0.78 0.92 1.06
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