# ANALYTICAL BUCKLING ANALYSIS FOR TOW-STEERED LAMINATES

# Eli Bogetti, (MSDS)<sup>2</sup>, Prof. John W. Gillespie, Jr.<sup>1</sup> University of Delaware | Center for Composite Materials<sup>1</sup> | Department of Data Science<sup>2</sup>

# Introduction

- Composite materials are used extensively in the aerospace industry
- Provide weight reduction and strength and stiffness tailoring
- Tow-steering allows local stiffness tailoring and possibly more weight reduction
- Also introduces local mechanical coupling
- Buckling load is an important design consideration
- Rayleigh-Ritz method has been used to predicted

# **Rayleigh Ritz Method**

Assume displacement functions

$$u(x,y), \quad v(x,y), \quad w(x,y)$$

• Minimize total potential energy  $(\Pi)$ 

$$\Pi = U + V$$

- Plate's strain energy: U
- Energy from external forces: *V*

$$\frac{\partial \Pi}{\partial S_{mn}} = 0$$

- $S_{mn}$  are unknowns in u, v, w
- Solve eigenproblem

$$([L] - N_{crit}[R])\{S\} = \{0\}$$

- Eigenvalue Critical buckling load
- Eigenvector Mode shape







# **Mechanical Coupling**

Complicates buckling analysis and requires more accurate assumed displacement functions

• For antisymmetric angle-ply

$$u = \sum_{m} \sum_{n} U_{mn} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)$$
$$v = \sum_{m} \sum_{n} V_{mn} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)$$
$$w = w_{cross-ply}$$

Assumed displacement function

$$u = U_1 \frac{x}{a} + u_{cross-ply} + u_{angle-ply}$$
$$v = V_1 \frac{x}{a} + V_2 \frac{y}{b} + v_{cross-ply} + v_{angle-ply}$$
$$w = w_{cross-ply} = w_{angle-ply}$$

Compared assumed displacement functions on different laminates<sup>2</sup>

- Hercules AS4/3501-6 graphite/epoxy
- Isolated certain coupling terms

### Laminates and associated coupling terms

| Laminate                   | Coupling Terms                    |
|----------------------------|-----------------------------------|
| Timoshenko                 | None                              |
| $[0_3/90_3/0_3/90_3]$      | $B_{11}, B_{12}, B_{22}$          |
| $[0_2/45_2/0_2/45_2/0_2]$  | $A_{16}, A_{26}, D_{16}, D_{26}$  |
| $[0_2/45_2/0_2/-45_2/0_2]$ | B <sub>16</sub> , B <sub>26</sub> |
| $[0_{6}/45_{6}]$           | Full ABD                          |

### Nondimensional buckling coefficient k

| Laminate                          | Bogetti | Cross-Ply | Angle-Ply |
|-----------------------------------|---------|-----------|-----------|
| Timoshenko                        | 4.00    | 4.00      | 4.00      |
| $[0_3/90_3/0_3/90_3]$             | 1.02    | 1.02      | 1.16      |
| $0_2/45_2/0_2/45_2/0_2$           | 1.30    | 1.30      | 1.30      |
| $_{2}/45_{2}/0_{2}/-45_{2}/0_{2}$ | 1.13    | 1.28      | 1.13      |
| $[0_{6}/45_{6}]$                  | 0.78    | 0.92      | 1.06      |

| F  |
|----|
| Ca |

- Rework problem to solve for u and v to compare to assumed displacement functions
- Incorporate tow-steering
- Investigate Rayleigh-Ritz effect on capturing local mechanical coupling

# References

- Timoshenko and Gere, *Theory of Elastic* Stability. 1961<sup>1</sup>
- David Jensen, Buckling and Postbuckling Behavior of Unbalanced and Unsymmetric Laminated Graphite/Epoxy *Plates*. 1986<sup>2</sup>
- Papazoglou, *Buckling of unsymmetric* laminates under linearly varying, biaxial in-plane loads, combined with shear. 1992

## **Future Work**

inalize validation for mechanical coupling ases

$$(x) = \begin{cases} 2(T_0 - T_1)\left(\frac{x}{a}\right) + T_1 & 0 \le x \le \frac{a}{2} \\ 2(T_1 - T_0)\left(\frac{x - \frac{a}{2}}{a}\right) + T_0 & \frac{a}{2} < x \le a \end{cases}$$

- Fiber angle at panel center:  $T_0$
- Fiber angle at panel ends:  $T_1$

# Acknowledgements

- This material is based upon work supported by the National Aeronautics and Space Administration under Grant and Cooperative Agreement No. 80NSSC20M0164, issued through the Aeronautics Research Mission Directorate, Transformative Aeronautics Concepts Program, University Leadership Initiative.
- Special thanks to my mentor, Brian Mason, and the ISAAC team at NASA Langley.