Molecular Dynamics Modeling of Traction Between Polyethylene Fibrils
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s widely used In numerous

structural applications.

« Atomistic modeling of interfaces between
crystal structures provides insight into the
behavior of inter-fibril interactions.

* Investigating

interface  interactions at

different temperatures & strain rates is

essential for
body armor.

advanced applications such as
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« Utilized LAMMPS with AIREBO-M potential
to conduct molecular dynamics

simulations.

* Postprocessi
OVITO.

ing was done in MATLAB and

* Asingle PE chain consists of 20 monomers
(120 atoms). The model contains 240
chains.

Molecular Dynamics Models
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(100) Model

Here, “surface energy” is the energy to create
two new surfaces after crack propagation,
which is the critical fracture energy.

E. —-Eb
Surface Energy (100) = 2((L(:0100)L(00)1))

E ED
Surface Energy (010) = 2((L(011(;)0)L(00)1>)

Total potential energy consists of three
individual components

EAIHEED — EREEG_I_ EL] _I_ETDrsiﬂn

Model AEREBO (gV/) |  AEU (eV) | AEtorsion (gV)
(100) Model 3.0 42.4 3.7
(010) Model 25 38 4 15

Comparison with Literature

Reference Surface Energy Remarks
(mJ/m2)
Current Work 78.8 for (100) surface | MD simulation with

75.5 for (010) surface | AIREBO-M potential

Howard et al. 145 for (100) surface | MD simulations with quasi-
Macromolecules 47.32 (2014) 105 for (010) surface | harmonic approximations

)
Wilhelmi et al. J. Phys. Chem. 143 for (100) surface | MD simulations with KDG
)

100.25 (1996) 147 for (010) surface | force field

Yeh et al. J Chem. Phys. 149 78 for (100) surface MD simulations with

(2018) bonding and debonding
processes (AIREBO-M)

Schonhom et al. J. Phys. 536 Expenments of single

Chem. 100 (1998) crystalline aggregafes

Owens et al. J. Appl. Polym. 33.1 Expenments of

Sci. 13, 1741 (1969) semicrystalline PE

Surface Eneragy vs Temperature
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« Simulations reveal that an increase in

temperature significantly influences the
surface energy of (100) surface, which can
be due to the change in entropy (S) and
enthalpy (H): G=H-TS

Surface Morphologies
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Increasing temperature leads to higher kinetic
energies of chains leading to higher energy
conformations.

Energy Change with Thickness (100)
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 Layer-1 has significantly higher energy,
due to ~50% reduction in the coordination
number of Layer-1 atoms.
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After 200 K, subsurface layers demonstrate
increased energy compared to Layer-5,
indicating that the interior atomic layers
progressively absorb energy during the
crack propagation at elevated temperatures.
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