APPLICATION OF UV-CURING RESINS FOR IN-PLACE PIPE REPAIR

CENTER FOR COMPOSITE MATERIALS

Gerard Skourlis (BChE)², Shagata Das (Ph.D.C.E.)³, Lukas Fuessel (Ph.D.M.E.)⁴, Prof. John W. Gillespie, Jr.^{1,3,4}

University of Delaware | Center for Composite Materials | Department of Chemical and Biomolecular Engineering² | Department of Civil and Environmental Engineering³ | Department of Mechanical Engineering⁴

Introduction

- Traditional methods of pipe and pipeline repair include excavation which is costly and time consuming
- Using UV-Curing resins offers a fast insitu and nonintrusive alternative
- These resins contain photo initiators that react when exposed to UV light and create free radicals.
- Free radical based polymerization and crosslinking results in structurally sound liner

Objective

- Develop a light source and resin system that can rapidly cure inside pipe
- Evaluate practical feasibility of commercially available liner systems
- Test mechanical properties compared to ASTM standards
- Analyze cure behavior

UV-DSC Cure Kinetic Study

Differential Scanning Calorimetry (DSC)
 To obtain the kinetics of the resin multiple samples were tested at varying temperatures.

Cure Modeling

 Using the parameters gained from the UV-DSC as input to existing model adapted from Beyene et al. we simulated the curing of the resin.

- The depth of cure exponentially increases cure time
- Backside has lower degree of conversion
- Heat generated by reaction quickly dissipates into environment

Mechanical Property Testing

- Shore Hardness is an easy way to measure degree of cure indirectly
- No of layers used makes hardness lower as we are limited by UV cure penetration depth

- Ultimate goal of achieving minimum ASTM flexural modulus of materials in situ
- Flexural test of 18 plies of 7781 E-glass and Vortex resin

Conclusions and Future work

- Further work is required to optimize system selection and cure schedule
- Function of intensity of level and exposure
- Need to minimize cure time for a practical application given real life constraints
- Effects of part thickness on absorbance/intensity decay
- Conduct experiments to establish process window to satisfy stiffness requirements for repair
- Cross correlate degree of cure and hardness level to achieve stiffness requirement vs hardness
- Real time measurement of storage modulus versus time in DMA
- Use these calibration curves to define repair time
- Identify the process conditions that minimizes repair time

Acknowledgements

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001333. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

