MOLECULAR DYNAMICS AND MACHINE LEARNING BASED SILANE CHEMISTRY OPTIMIZATION FOR HIGH STRAIN RATE APPLICATION

Dr. Abhishek Bhesania (P.D.)¹, Matthew Benvenuto, BS AMAT¹, Munetaka Kubota, (Ph.D.M.S.E.)^{1,2}, Dr. Sanjib C. Chowdhury¹, Prof. John W. Gillespie, Jr¹ University of Delaware | Center for Composite Materials¹ | Department of Materials Science and Engineering²

Introduction

- Structural armour is subjected to wide range of impact velocities.
- In a depth of penetration experiment, the strain rates in the interphase (nm thickness) range from 1015/s (strike face) to quasi-static levels (back-face).
- To maximise energy absorption during penetration, the constituent properties (fiber surface, silane chemistry and matrix properties) should be optimized as a function of strain rate on a layer basis.
- The goal of the work is to use Machine Learning to predict and optimize the Resin-Silane-Fiber formulation as a function of strain rate for maximum energy absorption/minimum depth of penetration.

Schematic of an armor being impacted by a projectile viewed as a stack of layers

As a first step in our quest to identify the optimum Resin-Silane-Fiber combination for maximum energy absorption while failure, we perform current analysis to identify optimum interphase chemistry.

Objective Chart

Molecular Dynamics Simulations

- Molecular weight due to different length by the silane molecule
- 20 to 28 % of the total energy absorbed till failure is required to overcome the non-bonded interactions for silane molecules in different groups.

- This leaves majority (70 – 80 %) of total energy absorbed consumed by the bond failure.

Machine Learning Model

1 Dimensional model kernel size 3 Activation function LeakyReLU Output layer activation function Softmax

CENTER FOR **COMPOSITE MATERIALS**

ML Output

Proving Ground, Maryland 21005, USA)