
Introduction

• Structural armour is subjected to wide range of impact 
velocities.

• In a depth of penetration experiment, the strain rates in 
the interphase (nm thickness) range from 1015/s (strike 
face) to quasi-static levels (back-face).

• To maximise energy absorption during penetration, the 
constituent properties (fiber surface, silane chemistry and 
matrix properties) should be optimized as a function of 
strain rate on a layer basis.

• The goal of the work is to use Machine Learning to 
predict and optimize the Resin-Silane-Fiber formulation 
as a function of strain rate for maximum energy 
absorption/minimum depth of penetration.

• As a first step in our quest to identify the optimum Resin-
Silane-Fiber combination for maximum energy absorption 
while failure, we perform current analysis to identify 
optimum interphase chemistry.
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Schematic of an armor being impacted by a projectile viewed as 
a stack of layers 

Perform Molecular Dynamics
simulations over Silanes of
different functionality (amino
and epoxy terminated) and
molecular weights are
considered.

Develop a Machine Learning
Model trained on the MD
simulation produced data.

Major outputs

- Failure Mechanism

- Ranking of silanes in terms of peak
strength and energy absorbed

- Information about non-bonded
interactions between silane-glass

Major outputs

- Prediction of new silane
candidates

- Performance prediction of new
silane candidates

- Performance prediction for the
hybridized silane cases
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Energy Absorbed During Failure

3-AMINOPROPYLTRIMETHOXYSILANE

Group 1 

N-(2-AMINOETHYL)-3-
AMINOPROPYLTRIMETHOXYSILANE 

Failing location: 
one of the bond 
connected to the 
Silicon atom.

Failing location: one of 
the bond connected to 
the internal Nitrogen 
atom.

(3- GLYCIDOXYPROPYL)TRIMETHOXYSILANE

Group 3

Failing location: one 
of the bond connected 
to the Oxygen atom.

Group 2 

Total energy absorbed till failure by each silane is a function of its 
– Failure mechanism
– Molecular weight due to different length by the silane molecule

- 20 to 28 % of the total energy absorbed till failure is required to 
overcome the non-bonded interactions for silane molecules in different 
groups.

- This leaves majority( 70 – 80 %) of total energy absorbed consumed by 
the bond failure.

Ranking based on Failure Mechanisms Identified

Hot Encoding Process

Parameters:

1 Dimensional model,
kernel size 3
Activation function 
LeakyReLU
Output layer activation 
function Softmax

Training loss (Blue) vs 
Validation loss ( Orange)

PC2

PC1

Encoder Decoder
Latent space

Representative smile string: 
CC(C)(C)C#C[Si](C)(C)C

Silane candidate: 
(3,3-dimethyl-1-butynyl)trimethyl-

Representative hot encoded matrix Reproduced hot encoded matrix

Application of Rdkit

- Sanitization of the SMILE 
string produced

- Molecular representation of 
the sanitized SMILE string

CC(C)(C)C#C[Si](C)(C)C

Transfer of data from 
MD to ML realm ML model

Interpretation of data 
produced by ML 

model

SMILES_CHARS =
[' ','.', '(', ')', '/','-' , '@', '=' ,'#', '+','*', '[', ']', '1', '2', '3','4','5','6', '7','8','9','0','C', 'N', 'O', 'S', 'H','F','P','B’, 
'I','G','T','L','Z','Y', 'K','A','M','R','D','E','U','W','V','c', 'i','l','e','r','n','o','b','a','t','g' ,'u','s','h','y','f','d' ,'m’]
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Encoded vector as image, ‘0’ appear dark spot 
and ‘1’ appear as bright spot

Input smile image

Reproduced smile image

Peak strength and total energy absorbed till failure 
evaluated from the MD simulations for relaxed double 
bonded configuration at the strain rate of 19 (1/s)

Peak failure load distribution Distribution of total energy 
absorbed till failure 
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Training and Validation

Mean Peak strength (nN) of each group at the strain rates of 
109, 1010 and 1011 (1/s)

Associating Property with the
Latent Space

Variational Auto-Encoder with CNN Architecture
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