Influence of Deformation of Compliant Rollers on Tape Steering during Automated Tape Placement

Lukas Fuessel

Department of mechanical engineering University of Delaware, Center for Composite Material

Motivation \& Introduction

Previous steering experiment showed:

+ 10x reduction in minimal steering radii
- Shear strain on the outside edges
- Unusual high path deviation

Hypothesis \& Approach

The path deviation is a combination of rigid transformation and rubber deformation while steering.
To investigate that the compliant roller will be modeled and validated

- Geometry validation using full 3D scan \& regular caliper measurements.
- Element size convergent study on quarter size roller model (Static compaction)
- Full steering model Quasi-static

Validation experiments:

Load-Deflection

Roller was tested up to 1 kN and side wall DIC was performed to capture deformation.

Digital Image Correlation (DIC)

DIC gives full field in sighed in deformations:

- More data points to correlate to the model
- Possibility to estimate influence of friction

Pressure film
FUJIFILM Prescale super low pressure (LLW) [0.5-2.5 MPa] was used utilizing a high-resolution scanner (3200dpi).

Geometry confirmation

- Calipers
- Keyence 3D scanner

Simulations

Quarter Model (convergence study)

- Convergence study
- Load deflection
- Pressure distribution

Goof agreement with load deflection and DIC data.

Full steering mode

- 2 step non-linear steady state model
- Prediction of roller deformation matches the magnitude of the path deviation observed in the steering experiments

Summary \& Conclusion

Previous experiments showed that the compliant roller has a huge influence while steering small radii using AFP. In order to predict what impact geometry, material, friction and the steering path have, the compliant roller of the Mikrosam AFP system was modeled using HyperWorks.
The simulations show good agreement with the experiments conducted. At steering radii < 100 mm the compliant roller accounts for $\sim 1 \mathrm{~mm}$ of the measured path deviation were the nip point difference accounts for $\sim 0.5 \mathrm{~mm}$. In future work this can be used to study the trade of different harnesses and thicknesses to minimize path deviation.

Acknowledgements

This material is based upon work supported by the National Aeronautics and Space Administration (NASA) under Grant and Cooperative Agreement No. 80NSSC20M0164, issued through the Aeronautics Research Mission Directorate, Transformative Aeronautics Concepts Program, University Leadership.

