## VACUUM INDUCED PREFORM RELAXATION FOR THE MANUFACTURING OF THERMOSET COMPOSITES WITH IMPERMEABLE INTERLAYERS

### Tania Lavaggi, (Ph.D.M.E.)<sup>1,2</sup>, Dean Vanegas, (B.M.E.)<sup>2</sup>, Dr. Sagar Doshi<sup>1</sup>, Kushal Metha, (M.M.E.)<sup>2</sup>, Prof. John W. Gillespie, Jr. <sup>1,2,3</sup>, Prof. Suresh G. Advani<sup>1,2</sup> University of Delaware | Center for Composite Materials<sup>1</sup> | Department of Mechanical Engineering<sup>2</sup> | Department of Material Science and Engineering<sup>3</sup>

### Introduction

VARTM of Polymer Composites with Impermeable Interlayers

- Improved delamination resistance.
- Cost-effective manufacturing of large parts.
- Unpredictable flow patterns in sublaminates during injection.
- Increased meso- and micro-variability of permeability.



Vacuum induced preform relaxation (VIPR) to reduce filling time

### Vacuum Induced Preform Relaxation

□ Vacuum chamber with separate vacuum line placed over vacuum bag.





Preform Vent Camera

### **Experimental Plan**

|                 | External<br>Chamber | VIPR Vacuum<br>Level | Preform<br>Width |
|-----------------|---------------------|----------------------|------------------|
| No VIPR         | No                  | N/A                  | 300 mm           |
| VIPR<br>30 inHg | Yes                 | 30 inHg              | 300 mm           |
| VIPR<br>10 inHg | Yes                 | 10 inHg              | 300 mm           |
| VIPR<br>5 inHg  | Yes                 | 5 inHg               | 460 mm           |

## **No VIPR Flow Fronts**

□ After 60 minutes from the start of injection.



### **Permeability Comparison**

No

□ Large race-tracking in 30 inHg and 10 inHg experiments  $\rightarrow$  VIPR bottom fronts not measurable.

|           | Fill Time [min] |        | Permeability [m <sup>2</sup> ] |          |
|-----------|-----------------|--------|--------------------------------|----------|
|           | Тор             | Bottom | Тор                            | Bottom   |
| R         | 86.5            | 76.5   | 1.25E-11                       | 1.56E-11 |
| R<br>inHg | 1               | N/A    | 1.02E-09                       | N/A      |
| R<br>iHg  | 2               | 7      | 6.52E-10                       | 9.31E-11 |

### **Filling Times Comparison**



### **VIPR Flow Fronts 5 inHg**

- □ Top view after 2 minutes from the start of injection.
- □ Bottom view after 15 minutes from the start of the injection.

















Acknowledgements Research was sponsored by the U.S. Army CCDC Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-18-2-0299.

# NIVERSITYOF

### Conclusions

### Advantages

Decreased fill increased and time permeability with VIPR.

□ Comparable FVF to no VIPR processes.

□ Cost-effective alternative to RTM and VARTM to manufacture large and thick composites with flexible impermeable interlayers.

### Challenges

□ Vacuum bag deformation during VIPR.

□ Exacerbation of race tracking.

□ Increased resin consumption.

### **Future Works**

### Increased number of sub-laminates and interlayers.

### Strategies to control resin consumption.