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Introduction
• Dyneema® HB210 is a new material

with ballis tic armor applications

• HB210 has high tensile strength with
low weight

• Damage mechanisms are clear at
cross section of impact site for tests
such as QSI and QS-PS

• Difficult to investigate cross sections
without damaging fiber architecture
due to high tensile strength
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Objectives
• Test samples for failure response under

QSI and QS-PS
• Obtain detailed images of specimen

cross sections at site of impact and
outside of annulus region

• Identify damage mechanisms in
specimens to classify failure modes for
Dyneema® HB210 for modeling

QS-PS Damage Evolution
• X-ray CT provides 3D virtual volumes of

specimens with which cross sections can
easily be investigated at any position in
the sample

Summary and Conclusion
• X-ray CT was completed on various HB210

specimens after QSI and QS-PST testing
• Internal damage of fiber architecture is

easily studied without any additional
unnecessary damage

• Delamination is a primary failure
mechanism preceding complete fiber
failure and material flows towards punch

Future Work
• Perform Nano X-ray CT to photograph

undamaged fiber cross sections to more
accurately model fibral architecture

• Develop methodology to capture live
X-ray Images during testing to record
video of internal damage mechanisms

• Export mesh of scans as finite element
model to directly compare experimental
results to FEM simulations

• Use results of X-ray CT imaging to model
interfibrillar damage interactions in LS-
DYNA

Figure 4: Isometric (a) and half width 3D cross-sectional view 
(b) of 5 mm thick HB210 specimen after QSI with 7.5 mm 
punch. 

Theory
• A parameter a/Hc serves as a

boundary to define failure modes for
Dyneema® HB210 where a is
annulus width (DS – DP)

• Fibers fail in shear when a/Hc < and
fail in tens ion when a/Hc > 1

Figure 1: Diagram of cross-
sectional QS-PS fixture setup 
featuring a/Hc parameters 
and a thin specimen 
(yellow).  
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Figure 3: 2D cross sections of 3 separate 2L-HB210 specimens 
after QS-PS demonstrating damage evolution. The samples 
were displaced to 50% of max failure load (a), 100% of max 
failure load (b), and beyond max failure load (c) 
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X-ray CT Process
• Objects are scanned with X-rays on a

rotating stage to capture 360 degrees of
2D images which are reconstructed into
slices to form 3D model

Figure 2: Isometric view of underside (a) and Impact face (b) 
of 2” x 2” 2L-HB210 specimen after QS-PS test beyond max 
failure load. HB210 specimen fibers often fail in “ribbons”
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QS-PS X-ray CT
• X-ray CT provides detailed 3D virtual

volumes of specimens to identify failure

QSI X-ray CT

Ribbon Failure
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