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TuFF is a highly-aligned, short fiber composite with Prior to Testing: Strain Dependence: ™"~~~ iE Viscosity Observations:
fiber volume fractions close to 60%. The high fiber to « Manufacture CF-PEI TuFF blanks and cut out Q° B . Viscosity had a low dependence on strain,

At 330°C, various < | ] indicating that microstructural changes (due to

polymer ratio yields impressive mechanical properties samples for testing strain-rates were

while the use of short fibers can allow for cheap, . . 5 el _ stretching) were small enough to have little
environmentally-friendly manufacturing as a result of ) Spe_ckle s.ample.s to qbtam surtace strain daéa fevrilgﬁeeg .rggtei\?zl . influence on the stress response

fiber recyclability. Although TuFF is unidirectionall during testing using digital image correlation (DIC) - Y K T o - o |
| y Y- J y constant with strain = o= 2000  Viscosity exhibited a logarithmic dependance with

anisotropic at the ply-scale, combining plies in alternat- * Measure undeformed sample dimensions but strain-rate . Rgmp g strain rate and temperature—which is consistent

iIng orientations (0°, £45°, 90°) produces quasi-isotropic effect was large. o e with the expected polymer viscosity behavior
properties. Unlike most long fiber and continuous fiber
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composites, fiber suspension in the polymer enables g Strain Unitormity: Fluid Modelling:

stretching in the fiber direction due to polymer shear. 2 - At different average strains, the distribution of » The relationship between average viscosity and

This behavior allows for the design and production of 3 local strain values can be calculated to show strain rate was well characterized as a shear

shapes more complex than can otherwise be made ¥ deviation from the mean thindnii\g fluid, which was captured by a power law
mode

using existing composite technologies. * Areas of high local strain can be used to predict

the location of initial failure at high average strain « Shear thinning behavior, which occurs in polymers

R 0%  24% Biaxial Stretch at high strain rate, can be explained by shear
' . During Testing: o — oo Eavg ~ 0.03 Eavg ~ 0.03 = T , :
PackingEndGap(0)  Stretch . g: o o 00001s-1 ¢ 000151 b magnification; the large shear rate in the polymer
« Heat sample to melt and hold isothermally _ T o is a result of fiber spacing and aspect ratios
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* Apply constant true strain rate until 10% strain is

,. 3 reached and allow sample stress to relax ol failure as well as deformation of the microstructure
Flwww_ e » Obtain time, force, and displacement from Instron %0 oot ooz oos oot o005 008 007 s The goal of this project was to determine the
Fiber Diameter (D) Fiber Distrbutionin x2 | | ponstnda B | anisotropic viscosity of TuFF in the fiber direction such
Proiect Obiectives: e Use video extensometer to observe deformation Power-law Fluid: that we could app|y this value to a material forming
| | of speckle pattern Viscos o | | model. On this front, we successfully found a relation-
Characterize the directional stretching behavior of TuFF Longitudinal  Transverse . 'S_COSE_'W dﬁcreaiﬁ_es ,W'tb i?cr_easmg strain rate, | ghip between n,4, T, and &,. The strain independence
to develop material constitutive laws from stress, strain, Stain . naieating shear tninhing benavior e/ allowed us to fit a power law model to the n,; vs. &
strain rate, and temperature. Constitutive laws will be s y |.. op = Keyormyy = Ké K(T) = Ae IRt curve to obtain the flow consistency index, K, and
implemented in new a finite element material forming : [ n~0632 A~483-107°Paxs" E =147 kJ/mol prc])wer I?r\]’\.’ Incex, l? r?lv_en tha;.0h< n < 1,bwe obsle_rveg
ulation for TUFE composite forming. z e . shear thinning behavior which can be explaine
Simuiation for 14 compostie 1orming = S |5 | - o= T300C - Pased]| through shear magnification. Due to the temperature
Problem Specification i ;~ | +§E§?§§§i} dependence of K, we were a_ble to fit the Arrhenigs
L4l i | \ T—320 . Passed equation to our system to find the pre-exponential
Investigate ply-scale anisotropic viscosity in the 0° <a |° Z = \ TZ330C - Faded | factor, A, and the activation energy, E. Testing will
direction of TuFF by applying uniaxial tension in the g, . S continue to be conducted to obtain more data for fitting
fiber direction. 1i |* - ) IRENY parameters. Additional investigation will be conducted
Impart environmental controls to determine temperature 0! - - T > 10° igcglestterrar?rin deis’;[rri?ar:l?i\cl) enrge behavior and the effects of
and strain rate dependence. Time (s) '
011 [myy M 0 |[é Data Analysis using DIC: |
_ : I' = const. 08 Acknowledgements
22 = T](1)2 n(Z)Z 0 []€2 é = const. il - Set the undeformed image as the reference 10* 0 109 9
I 6_ n66 86 | | | | rue dtrain Rate (s . . .
i S | | il“ ¢ Use t|me data aIOng W|th DIC algOn.thm tO-ﬁnd the Shear Magnification: Thls materlal 15 based upon Work Supported by
Fiber I local and average surface strain (axial and o | | the National Aeronautics and Space
N E=== direction | || ||||| transverse) along the gauge section * Large aspect ratios in the fibers result in a large Administration under Grant and Cooperative
= | I Il H“ _ o o _ shear rate to strain rate ratio . :
o® | o | f |‘||| + Assuming composite incompressibility (neglecting | Agreement No. 8ONSSC20MO0164, issued
| M1 ™ 5 ||| “iilii i porous volume), determine the true stress of the € = 0.0001 sTh T =01 S__ll through the Aeronautics Research Mission
Ertonsion” _ f||||l|| | sample with respect to axial strain y=02s — - y=200s Directorate, Transformative Aeronautics
’ == = | N2z & ‘i |||||||| | » Calculate viscosity and average strain rate within Yo_ 2 L 103 Concepts Program, University Leadership
oy, EE=====7y L the sample gauge section & In,/V;D Initiative.
&3‘/(')/) /": :_;// Creasy & Advani J. Non-Newt.
| /___ T_:___ = Fluid Mech. 73 (1997)

Co-Sponsored by:
University Leadership Initiative (ULI)  pariner




	Slide Number 1

