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surface healing mechanism. =» Atomistic scale simulation Is . o | | composition mapping will be enabled from atomistic scale
inevitable to understand and predict these properties. «» Gen 2 training sets (in progress) show improvements over Gen 1 boint of view
% For the prediction of such properties with MD simulation, reactive | results. | . 2 New GA+ANN machine learning parametrization algorithm
interactive potential with proper parameters is inevitable. But no v Several regions require more fitting. | | can be further enhanced
reactive interatomic potential for multiple oxide glass was developed = * More DFT (Density Functional Theory) simulations are in progress.

so far =» Smart algorithm can enhance efficiency of parametrization.
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