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Technical Approach

« Macroscopic damage modes dissipate energy through

e Elastic strain energy (wave motion, vibration), plasticity
« Meso- and micro-mechanical damage mechanisms:
e Matrix cracking, debonding, tensile fiber fracture, etc.

e |solate mechanisms and characterize properties and damage evolution (“See It”)

e Single layer eliminates delamination mode, interlaminar stress field, nesting
 Focus on perforation phase (eliminate penetration and transition)
 Characterize quasi-static and dynamic material constitutive model parameters
 Characterize cohesive law properties for tow-tow delamination damage mode
 Characterize wave propagation and effect on mesoscale damage modes

Key Accomplishments/Path Forward

Demonstrated that at mesoscale, there is a perforation energy difference

depending on impact location relative to an RVE

Damage characterization at microscale showed damage evolves from

transverse matrix cracks to tow-tow delamination cracks

Demonstrated characteristic patterns of mesoscale damage that relate to

the mechanisms of damage formation:

« Transverse cracks — x pattern —tension in primary tows transferred to
transverse tows

o 45° cracks — ¢ pattern — shear between orthogonal tows cracks
Interstitial matrix pockets
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mesoscale damage mechanisms

« Meso-mechanical model of mesoscale mechanisms under impact:
 Plain weave architecture, tow undulation, tow-tow overlap and bond,

primary tow tension, secondary tow tension-shear Maj Oor ReS U ItS

 Tow-matrix and tow-tow debonding, matrix cracking continuum « Continuum model reproduces experimental results for V; » Vg, = 175m/s, not V; ~ Vg,
damage and plasticity « Meso-mechanical model more accurately reproduces Vg results and predicts Vg,
 Longitudinal and radial stress waves, transverse deformation wave  Meso model with unbonded tows shows improved V; — Vy results over continuum

« Model damage and failure modes from understanding of mechanisms « Meso model with perfectly bonded tows predicts Vg; more accurately

constituents with material properties and geometry validated by experiments

- Sample 3, 5155-20, V; = 174 m/s, Sample 3, 5155-20, V; = 174 m/s, Sample 3, 5155-20, V, = 174 ms,

 Path Forward includes characterization of quasi-static and dynamic
(SHPB) material constitutive model parameters

« Including cohesive bond with appropriate traction-separation laws gives more accuracy « Develop test methodology and specimens for determining traction-
Vi > Ve Continuum Model, Plain Weave Effective separation law for tow-tow delamination
Properties for MAT-162, S-2 glass /SC15 epoxy 7 il : . . : .
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_ transverse deformation cone wae architecture including tow-tow delamination as seen in V; — Vg results, but also stress JHU group (Brady/Bhaduri) for uncertainty quantification studies
Collaboration: wave interaction with the architecture, which may initiate tow-tow delamination cracking e Fabrication of unidirectional composites by filament winding at ARL, panels

« UD-JHU: Mesomechanical Modeling and Uncertainty Quantification leading to tension in primary tows, the dominant energy dissipation mechanism and experimental results transitioned within CMRG to JHU group (Ghosh)

« UD-MSU: Damage Assessment of Single-layer Ballistic Impact  Through-thickness stress wave modeling and validation vs 1D theory is examining the . Lower length scale molecular dynamics simulations (Chowdhury, et al.) and

* ARL-UD-Drexel: Fabrication of Single-layer Woven Composites for effects of stress wave on Initiating tow-tow delamination micromechanical simulations (Haque, et al.) transition within CMRG to
Canonical Ballistic Impact 1D, A, it, V; = 100m/s _Node-Merged Cohesive Zones iInform the meso-mechanical model, providing traction-separation and

« ARL-UD-JHU: Filament Winding of Unidirectional Composites e | rew | material constitutive model inputs

Understand impact damage evolution in space/time for plain weave ' | « Validated meso-mechanical model will be transitioned to ARL for evaluation

composite: of plain weave composite impact performance

e Quasi-static and dynamic material characterization for composite
constitutive model

* Impact experiments for cone wave velocity and damage evolution in N
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] ] ] . . 1D, B, i, V; =100 m/s Node-Merged Cohesive Zones N AN o N :
o Simulations of through-thickness stress wave for contribution to tow- " iorem, | e : O O DTS G302 030 0% 0 05005 00 08 70 075 o0 e
tow delamination and debonding j e
| | |

Through-thickness (z) Stress Wave: 1D FEM, Elastic, NM, x=2.15mm

Particle Velocity, m/s

50 ¢

Contribution to MEDE Legacy

 Validated meso-mechanical plain weave composite model will be applied to
woven composites of interest to the Army

« Canonical single-layer impact experiments for model validation and > i * In materials-by-design framework, model will be used to evaluate novel
meso-mechanical modeling of canonical perforation experiments ool iifi::gzi] corrt]potgltefmatt(re]nal slﬁgtems n ballistic impact leading to enhanced
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