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How We Fit Technical Approach Major Results/Key Accomplishments

Key Goals Major Results/Key Accomplishments

Contribution to MEDE Legacy

Transitions to ARL, within 
CMRG and to other CMRGs

UNCLASSIFIED

UNCLASSIFIED

Multi-Scale Modeling of Fiber-Matrix Interphase

Materials-by-Design Process

Mechanism-based Approach

 Establish a molecular dynamics based “Materials-by-
Design” framework for composite interphase

 Bridge length scales using MD based mixed-mode 
cohesive traction law surfaces

 Design new composite interphases to improve 
composite performance  based on CMRG integrative 
models and objective functions

Interphase

 Interphase is a distinct region between fiber and 
matrix which develops during processing through 
diffusion and reaction between the matrix and the 
fiber sizing 
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Develop MD Based Mixed-
Mode Traction-Separation 

Law Surfaces
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Pressure Effects)
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 Developed MD protocol will be transitioned to ARL
 MD based interphase mixed-mode traction law will be 

used in composites micro-mechanics damage modeling

 MD based materials-by-design framework will guide 
ARL/CMRG experimentalists to design optimum 
interphase structure 
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Path ForwardFiber-Epoxy Interphase Modeling 
with Monolayer Silane

 Diagonal type 
pattern is favorable 
to increase 
strength and 
energy absorption  

 Interphase thickness is about 1 
nm consists of different 
connectivity
patterns
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 Overall, composite strength improves with increase in the 
silane (GPS) concentration

 At 0% GPS, failure is adhesive at fiber surface (Non-
bonded interaction only)

 As GPS number density increase, cohesive failure occurs 
in the bulk epoxy 

 At 50-75% GPS concentration, composite strength and 
energy reach bulk epoxy properties and failure modes 
transition to cohesive failure in epoxy

 MD prediction is consistent with the micro-mechanics 
based R-value analysis (Ganesh et al., JCM 2018)

 Development of mixed-mode TL is in progress

 MD based interphase design for the CMRG uniaxial 
tension and punch shear integrative models

 Study the effects of fiber breakage on energy dissipation 
- interphase de-bonding and matrix cracking 
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