

Resistance-Based Sensing in Carbon Nanotube Composites Under Dynamic Loads

A. S. Wu, Q. An (PhDMSEG), T-W. Chou and E. T. Thostenson

University of Delaware . Center for Composite Materials . Department of Mechanical Engineering

MOTIVATION

Failure prediction in advanced materials is critical to their success in high-performance applications.

• In FRPs, the onset of failure due to matrix cracking and interphase debonding often occurs without a significant decrease in load-carrying capability.

Nondestructive damage sensing approaches:

- off-line (e.g., ultrasonic C-scanning, X-ray microtomography and liquid penetrant)
- real-time (e.g., time-domain reflectometry, acoustic emission and electrical resistance measurements)
- Resistance-based sensing allows for both off-line and real-time health monitoring.

Conductively modified carbon nanotube-based composites and their electrical response to dynamic loading is the focus of this research.

RESULTS

Single specimen impacted multiple times at increasing energy

- Stiffness decreases after each impact.
- Anomaly in stress response due to large delamination during impact (6)
- Permanent resistance changes after each loading indicates damage.

CURRENT RESEARCH

Record resistance on the experimental timescale (~300 µs)

Specimens undergo axial compression and radial tension (Poisson's effect).

RESISTANCE-BASED DAMAGE SENSING

Preform: twenty plies of plain woven E-glass fabric

- Fabric is treated with a carbon nanotube-based sizing agent then infused with SC-15 epoxy resin.
- Carbon nanotubes are deposited at the fiber surface resulting in electrical percolation in a composite specimen.
- The resistance of this nanotube network is particularly sensitive to interphase debonding and delamination.
- Panel is cut to yield 45° off-axis specimens

Lim, An, Chou and Thostenson (2010) Mechanical and electrical response of carbon nanotube-based fabric composites to Hopkinson bar loading. Composites Science and Technology 71:616-621

Stress and resistance are plotted vs. time below:

DAMAGE BEHAVIOR

- Delamination occurs in these 45° off-axis specimens.
- Future work includes:
 - Exploring electrode configurations which are more sensitive to this mode of failure and
 - Measuring the resistance response to dynamic compression-induced shear failure

© 2011, University of Delaware, all rights reserved

Striker Bar (SB)

← L_{SB} →

SPLIT HOPKINSON PRESSURE BAR

Consists of a striker bar (SB), incident bar (IB) and transmission bar (TB)

A gas gun propels the striker bar, which impacts the incident bar.

• This results in a stress wave to propagate through the incident bar (σ_{I}) to the bar-specimen interface.

The degree of acoustic impedance mismatch and the specimen geometry control the amount of stress reflected back through the incident bar (σ_R) and transmitted through the transmission bar (σ_{T}).

Measures the mechanical response of a specimen to dynamic compression loading.

CONCLUSIONS

- Achieved electrical percolation in a thick section composite using a carbon nanotube-based fiber sizing agent.
- Demonstrated effectiveness of the carbon nanotube network in sensing damage during dynamic compressive loading.

ACKNOWLEDGEMENTS

U.S. Army Research Office Grant No. W911NF-09-1-0114 **Dr. Bruce LaMattina**

U.S. Office of Naval Research Grant No. N00014-09-1-0365 Dr. Yapa Rajapakse