

DESIGN AND FABRICATION OF VARTM FABRICATED SKIN PANELS WITH INTEGRATED HOLLOW STIFFENERS

Pit Schulze, John Tierney, Dirk Heider, and J.W. Gillespie, Jr.

University of Delaware . Center for Composite Materials .

MOTIVATION

♦ Provide design and fabrication methodology for costeffective body part replacement on aging aluminum aircraft panels

- ♦ Design for matching stiffness response, weight reduction, parts consolidation and increased corrosion resistance
- ◆ Develop processing approach to integrate hollow stiffeners matching the baseline geometry
- ♦ Evaluate VARTM-fabrication of composite replacement for aluminum wing skin panel

DESIGN AND OPTIMIZATION

- Reverse engineered geometry of existing part
- ◆ Design and optimization of composite part in CAD/FEA environment to match response

SUB-SCALE PROTOTYPE

Preparation of water-soluble core material

accessory mold inserts

First prototype after flushing of soluble core material

SUB-SCALE OPTIMIZATION

- ♦ Introduction of inserts to ensure proper compression in transition zone
- Infusion via VAP-process with optimized distribution media placement
- Non-soluble core sealer

FULL-SCALE PROTOTYPE

FULL-SCALE EVALUATION

CONCLUSIONS

- VARTM-infusion of single component hollow-stiffened composite panel proven in full-scale prototype
- Water-soluble core material introduces biggest processing challenges, especially reliable sealing against resin
- Foundation for efficient VARTM-based composite replacement of aging aluminum aircraft panels

ACKNOWLEDGEMENTS

This work is supported by the Office of Naval Research through the Advanced Materials Intelligent Processing Center.

through small holes with