

RESPONSE OF THE ADHESIVE INTERLAYER UNDER DYNAMIC LOADING

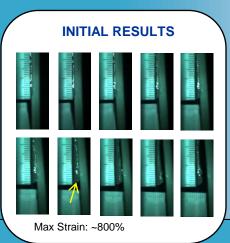
G.M. Peters¹²³ (MCE), B.A. Gama¹², J.W. Gillespie Jr.¹²³

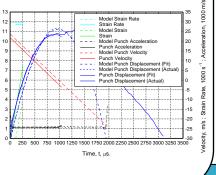
¹University of Delaware . ²Center for Composite Materials . ³Department of Civil Engineering

OBJECTIVES

- Design a test method which subjects the adhesive interlayer to a large strain at a high strain rate and is capable of characterizing this dynamic deformation behavior while using actual components and dimensions similar to a realistic impact scenario
- Use the test method to examine the role of interlayer and measure properties related to strain, strain rate, and crack propagation
- Take findings from the test results to quantify the optimum properties needed for the interlayer

DYNAMIC BEAM TEST DESIGN


- The beam test design was developed using FE modeling and adapted to be used with the gas gun
- A projectile is fired from the gas gun impacting a punch which loads the composite backing plate therefore deforming the adhesive interlayer
- High-speed camera captures deformation


SPECIMEN DESIGN & FABRICATION

- Specimen was designed to allow for maximum strain of the interlayer under a high realistic strain (~26,000/sec) before fiber or ceramic damage
- The specimens are 2.0-in x 10.25-in with 2.25-in tile cavity in center
- The composite is 6 layers thick composed of S2glass and SC-15 resin
- Aluminum tiles are used initially to replace ceramic tiles
- A silicon mold was made to fabricate specimens
- Pre-treated tiles are first placed in the mold, de-gassed resin is then poured, the composite placed on top and specimen placed in oven to cure

COMPARISON OF FE AND EXPERIMENTAL RESULTS

PATH FORWARD

- ♦ Replace aluminum tiles with ceramic
- Continue testing a variety of potential interlayer materials:
 - Air Products VPS Resins
 - Structural Adhesives
 - Surlyn
- Fully develop and further understand analysis parameters
- Consider complete analysis and make conclusions regarding the optimal interlayer properties needed.

CONCLUSIONS

- Experimental testing shows good congruence with FE models
- The dynamic beam test method is an adequate way to study adhesive interlayers under dynamic loading

ACKNOWLEDGEMENTS

This work is supported by Air Products and the Army Research Laboratory through the Composite Materials Research program

