

MODELING THE IMPACT OF FLEXIBLE TEXTILE COMPOSITES THROUGH MULTISCALE AND PROBABILISTIC METHODS

(Continued)

OVERVIEW OF PROBABILISTIC

FRAMEWORK

PROBABILISTIC NATURE OF FABRIC IMPACT PERFORMANCE

- Parameters such as V₀, V₅₀, V₁₀₀ used to describe impact performance
- Probabilistic impact performance arises from two sources of variability:

Intrinsic: filament geometry (diameter) and packing, fabric architecture, yarn material properties (modulus, strength, frictional coefficient), et cetera.

Extrinsic: experimental equipment (gas gun, projectile, backing material), statistical techniques (Never-D, Langlie), testing conditions (fabric slippage, impact location), et cetera.

IMPORTANT QUESTIONS

- What is the relation between the statistical nature of yarn strength and the fabric probabilistic impact performance?
- How do the characteristics of the varn strength distribution (mean, width, shape) affect the impact performance?
- What are the effects of weaving and scouring strength degradations on the impact performance?
- ♦ What are the effects of projectile characteristics (size, shape, trajectory) and fabric architecture (plain weave, structural stitching, 3D fabric) on the probabilistic impact performance?

EXPERIMENTAL AND NUMERICAL SETUP

Numerical setup Experimental in LS-DYNA Fabric Slippage

Grip fixture

Sample strength mappings in two fabric samples. Each yarn assigned to a strength based on the statistical strength distribution.

Numerical Fabric Slippage

NUMERICAL V₀-V₁₀₀ PREDICTIONS

by a 0.22 caliber spherical projectile

NUMERICAL V₀-V₁₀₀ PREDICTIONS

ACKNOWLEDGEMENTS

This work is supported by the Army Research Laboratory through the Composite Materials Research program.

EXPERIMENTAL CHARACTERIZATION OF YARN STRENGTH – WEAVING EFFECTS 1.0

EXPERIMENTAL CHARACTERIZATION

OF YARN STRENGTH – LENGTH SCALE

EFFECTS

Weibull distribution with parameters σ_{o} (scale), *m* (shape), x (threshold), length scale parameter α (α_1 for L < L₀; and α_2 for L > L₀)

 $F(\sigma) = 1 - \exp\left(-\left(\frac{L}{L_0}\right)^{\alpha} \left(\frac{(\sigma - x)}{\sigma_0}\right)^{\alpha}\right)$

- 0.5 Spool (MR) - Spool (GG) Greige Warp (MR) - Greige Warp (3P) 0.4 Greige Fill (MR) - - Greige Fill (3P) Scoured Warp (MR) DF 0.2 Scoured Warn (3P) Scoured Fill (MR) Scoured Fill (3P 0.0 3250 2000 2250 2500 2750 3000 Strength (MPa) 3-parameter Weibull and G-Gamma distributions used for the CDF Weaving and scouring processes cause tensile strength degradations
- Warp yarns are degraded to higher levels than the fill yarns