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ROLE OF MATERIALS AND
ARCHITECTURE ON IMPACT
PERFORMANCE

4 2D Vs. 3D architecture

4 Role of structural stitching and Z-tows

¢ Effect of tow geometry and undulations

4 Effect of material properties (e.g. modulus,
strength)
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COMPUTATIONAL MODELING OF
FABRIC IMPACT

4 Fabric system studied: plain weave Kevlar S706 fabric
4 Understand energy dissipating mechanisms: momentum
transfer, internal energy, frictional interactions

4 Investigate interactions: yarn-yarn, projectile-fabric, fabric
layer-layer

4 Finite element analysis using LS-DYNA

4 Fabrics modeled using a yarn-level architecture

Automated FE
Preprocessors for
3D Textile Modeling

MULTISCALE MODELING OF
FABRIC IMPACT

4 Massive savings in the computational requirements of the
FE model

4 Enables simulation of large dimensioned multi-layer fabric
panels

4 Yarns modeled using both solid and shell elements

4 3 modeling levels — filament, yarn, membrane

Hybrid Element Analysis (HEA)
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SETUP OF 2D AND 3D
FABRIC FE MODELS

4 Micrographs used as input to DYNAFAB™

/MULTISCALE MODELING\
USING THE HEA METHOD

SAMPLE HEA
CONFIGURATIONS

4 Output is a FE model with a yarn level

Projectile

architecture

element yarns
element yarns

Local region, solid

Single Scale HEA  Center Cross HEA

Local region, shell

Global region,
homogenized shell
elements

Interface #1

Interface #2

Hybrid Element Analysis (HEA) is defined as
‘the finite element analysis of a structure by

combining different finite element formulations at
both a single and multiple scales of modeling’

Central Patch HEA  Center Strip HEA

Impedances matched across all interfaces to
prevent interfacial reflections of the longitudinal
strain wave
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PROBABILISTIC NATURE OF FABRIC
IMPACT PERFORMANCE

4 Parameters such as V,, Vg, V4o Used to describe impact
performance

4 Probabilistic impact performance arises from two sources of
variability:
Intrinsic: filament geometry (diameter) and packing, fabric
architecture, yarn material properties (modulus, strength,
frictional coefficient), et cetera.

FRAMEWORK

Statistical Yam Material Properties

OVERVIEW OF PROBABILISTIC

Extrinsic: experimental equipment (gas gun, projectile,
backing material), statistical techniques (Neyer-D, Langlie),
testing conditions (fabric slippage, impact location), et cetera.

IMPORTANT QUESTIONS

¢ What is the relation between the statistical nature of yarn
strength and the fabric probabilistic impact performance?

4 How do the characteristics of the yarn strength distribution
(mean, width, shape) affect the impact performance?

4 What are the effects of weaving and scouring strength
degradations on the impact performance?

4 What are the effects of projectile characteristics (size, shape,
trajectory) and fabric architecture (plain weave, structural
stitching, 3D fabric) on the probabilistic impact performance?

Factors affecting yam strength

distributions.

- Defect distribution

- Weaving effects

- Processing (e.9. scouring)

- Environmental (e.g. age. moisture,
temperature, UV exposure)

- Handling and re-spooling
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Sample strength mappings in two fabric samples.
Each yarn assigned to a strength based on the
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statistical strength distribution.

EXPERIMENTAL CHARACTERIZATION OF

EXPERIMENTAL CHARACTERIZATION
YARN STRENGTH — WEAVING EFFECTS

OF YARN STRENGTH - LENGTH SCALE
EFFECTS
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4 3-parameter Weibull and G-Gamma distributions
used for the CDF

4 Weaving and scouring processes cause tensile

j'"] strength degradations

Cumulative Distribution Function (CDF) for a 3-parameter
Weibull distribution with parameters g, (scale), m (shape),
x (threshold), length scale parameter a (a, for L < L,; and
a,forL>L)
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4 Warpyarns are degraded to higher levels than the fill
yarns
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2in. x 2in. Kevlar S706 fabric with spool based strength
mappings held on four sides (zero slippage) and impacted

by a 0.22 caliber spherical projectile
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