
Introduction 

Purpose: Within the domain of material science, silanes 
emerge with numerous applications, one use case is 
designing structural armor. Our exploration ventures into the 
intricate chemical space of silanes, where we discover new 
structures and optimize over desirable properties for specific 
applications.

• To maximize energy absorption during penetration, the 
constituent properties (fiber surface, silane chemistry and 
matrix properties) should be optimized as a function of 
strain rate on a layer basis.

Target: traverse molecular landscape, where we uncover 
concealed patterns and connections. Leveraging our 
understanding to  sample new molecules with desirable 
properties from a permutation of learned features: atoms, 
bonds, bond types, geometries, and concealed patterns.

Approach: Leveraging the cutting-edge synergy of Machine 
Learning and Generative AI, this project embarks on a 
sophisticated endeavor to discover and optimize novel 
chemistries. 
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Machine Learning

The Variational AutoEncoder  is designed to capture and learn 
intricate patterns from the vast chemical space of silanes by 
compressing and expanding the embedded information. The 
model acquires fluency in the language of molecules, for the 
purpose of being leveraged as a tool to discover optimal 
chemistries.

Sampling & Reconstruction
In our quest to discover high-strength silane candidates, our 
exploration journey begins with a strategic and guided sampling 
process from the latent space. We lay the foundation by 
centering a centroid around the region occupied by the highest 
strength silanes within the chemical space. From this focal 
point, we employ a powerful approach, sampling from a normal 
distribution that radiates around the centroid.
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Perform Molecular Dynamics 
simulations over Silanes of different 
functionality (amino and epoxy 
terminated) 

Major outputs

- Optimized Chemistries
- Performance Prediction

Encoder Decoder

Latent space
Representative smile string: 

CC(C)(C)C#C[Si](C)(C)C

Silane candidate: 
(3,3-dimethyl-1-butynyl)trimethyl-

Representative hot encoded matrix Reproduced hot encoded matrix

Application of Rdkit

- Sanitization of the SMILE string produced
- Molecular representation of the sanitized SMILE 

string

CC(C)(C)C#C[Si](C)(C)C

Transfer of data from MD to ML realm Variational Auto-Encoder with CNN 
Architecture

Interpretation of data 
produced by ML model

SMILES_CHARS =
[' ','.', '(', ')', '/','-' , '@', '=' ,'#', '+','*', '[', ']', 
'1', '2', '3','4','5','6', '7','8','9','0','C', 'N', 'O', 
'S', 'H' , 'F' ,'P','B’, 'I','G','T','L','Z','Y', 'K', 
'A', 'M','R' ,'D ','E' ,'U','W','V','c', 'i', 'l', 'e', 
'r','n','o','b','a','t','g' ,'u' ,'s', 'h','y','f','d' ,'m’]

Model Architecture

At the forefront of our model lies the encoder, deftly encoding 
intricate chemistries onto a precise mathematical space, 
capturing essential features and relationships. Complementing 
the encoder, the property predictor artfully constrains high-
strength candidates within a defined region, ensuring precision 
in material characteristics and guiding the generation of silanes 
with desired properties. The decoder, our third cornerstone, 
exemplifies finesse as it learns to effortlessly reconstruct 
encoded molecules

Latent & Property Predictor
The latent dimension serves as a compressed representation 
of the high-dimensional chemical space of silanes, effectively 
reducing the data's dimensionality while retaining essential 
information, capturing meaningful features in a more concise 
form.

The property predictor, acting as a powerful regression model, 
empowers us to predict and refine the mechanical properties 
of the generated candidates, ensuring they align with desired 
specifications.

Marking Optimum Regions
With this strategic combination, we efficiently explore the 
latent space, targeting regions that yield high-strength silanes 
and revolutionizing material design.
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Total energy absorbed till failure by each silane 
is a function of its 

– Failure mechanism
– Molecular weight due to different length 

by the silane molecule

Develop a Machine Learning Model 
trained on the MD data.

The region marked with yellow 
indicates optimal properties for the 
silanes in the latent dimension

Machine Language

Model Outputs 

Output Silane Decodings

Input Silane Encodings

CO[Si]1(CCCN)OC[SiH2]O1 CO[Si]1(CCCNCCN)O[SiH2]O1 CO[Si]1(CCCNCCCCCCN)O[SiH2]O1

CO[Si](CCCCC)C)[SiH2]C CO[SiH(]CCCCCCC)[SiH2]CC CO[Si](CCCCCCCCCCCC)O[SiH2]CC
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