Durability of a Recyclable Thermoset Resin Under Different Temperature And Saturation Conditions

Kayshavi Bakshi1, Sagar Doshi 2, Shagata Das3, Jovan Tatar4
1 Undergraduate Student, Arizona State University, 2 Associate Scientist, Center for Composite Materials
3 Graduate Student, University of Delaware, 4 Associate Professor, University of Delaware

Motivation
- Composites (Resin + Fiber) are frequently used in infrastructure applications
- Thermoset resins lead to generation of non-recyclable waste

Covalent Adaptable Networks (CANs)
- Polymers with CANs can rearrange their molecular structure through bond exchange while maintaining constant number of crosslinks
- Behave like thermosets but possess beneficial properties of thermoplastics (reprocessable, recyclable, self-healable)

Disulfide Exchange
- In this work, disulfide bonds were integrated into an epoxy resin to enable recyclability
- While imparting recyclability and self-healing to polymer resins, disulfide bonds are susceptible to hydrolysis under mechanical stress in presence of water or alkali which may lead to inferior performance under sustained loading (typical for infrastructure applications of composites)

Objectives
- Synthesize an unrecyclable analog to disulfide resin to serve as control
- Interrogate hydrolytic resistance of recyclable resin by conducting creep experiments on alkali solution-saturated resin samples

Resin Benchmarks
- Recyclable resin exhibits similar mechanical behavior
- Glass transition occurs over a similar temperature range for both resins

Experimental Methods
Sample Fabrication
EPON 826 + Hardener (MDA/2AFD) ⇒ Oven

Compressive Testing
Measure mechanical properties (tensile strength, ultimate elongation, elastic modulus)

Dynamic Mechanical Analysis (DMA)
Measure glass transition temperature and perform creep experiments

Covalent Adaptable Networks (CANs)

Disulfide Exchange

Sample Saturation
Solution: 20g of NaOH in 500ml of H2O
Saturated in Oven at 60 °C until mass of sample stabilized

Wet vs Dry Creep Behavior
- Creep experiments conducted in three-point bending at 60 °C under a constant stress representing 80% of yield stress
- No significant difference observed between conventional and recyclable resin

Conclusions
- Recyclable and conventional resins have comparable properties
- Disulfide bonds do not appear to exhibit sensitivity to hydrolysis based on the results from short-term creep tests
- Future work should conduct creep tests in wet atmosphere for a longer duration to evaluate the creep resistance more adequately.

References:
[1] Transpo Industries. E-Bond 526 Epoxy Resin Binder High Friction Surface Treatment 2023

Acknowledgements:
This material is based upon work supported by National Science Foundation Award #2050879