MECHANICAL BEHAVIOR OF UV-CURED COMPOSITE STEPPED LAP ADHESIVE JOINTS

Shagata Das, (Ph.D.C.E.)¹, ², Prof. John W. Gillespie, Jr.¹, ², Prof. Harry W. Shenton, III², Dr. Jovan Tatar¹, ²
University of Delaware | Center for Composite Materials¹ | Department of Civil and Environmental Engineering²

Introduction
- Natural gas important strategic resource for the U.S.
- Legacy cast iron and bare steel pipes failures
- Excavation and replacement costs $1-10M per mile and disrupts gas supply
- Bladder expandable robotic system and UV-curable materials
- Create stand-alone structural pipe within existing pipe; no gas shut-down required
- Each preform of finite length is co-cured with the next segment using a highly efficient scarf or stepped lap joint
- Repair pipes over long distances

Objective of this Study
- Novel aspect of this research is the use of UV-cured vinyl ester resin for joint manufacture
- UV-curable resins are ideal for rapid curing at ambient temperatures
- Evaluating the static load performance of co-cured stepped-lap joints with varying stepped lap joint angles and number of steps

Stepped Lap Joint Configurations
- Co-cured stepped-lap joints; 20-ply laminates
- Number of steps: 19, 3, 1
- Scarf angle: 0.9°, 1.2°, 2.9°, 5.7°

Materials
- 7781 E-glass 8-harness Satin Weave
- Commercial UV Curable Vinyl Ester Resin
- Modulus of the laminate: 23.3 GPa
- Ultimate Tensile Strength: 347 Mpa (50 ksi)

Methodology
- Vacuum Assisted Resin Transfer Molding (VARTM)
- Fiber volume fraction was 50% on average and void content < 0.6%
- Panel was cured for 3 minutes using a 400-nm UV source

Test Variables
- Co-cured stepped-lap joints; 20-ply laminates
- Number of steps: 19, 3, 1
- Scarf angle: 0.9°, 1.2°, 2.9°, 5.7°
- 400-nm UV source
- Displacement rate of 1.27 mm/min
- 3D Digital Image Correlation (DIC) system to record strain data
- Longitudinal and transverse strains were averaged over an area of 1.9 x 1.9 cm

Tensile Testing Result
- Tensile strength of the joint increased as the scarf angle decreased
- Joint efficiency of 100% was achieved
- Tradeoff between joint length and strength needs to be considered

Failure Mechanism
- Failure initiated at the end of the overlap at the surface
- Propagation of damage occurs gradually

Ongoing Work
- Numerical simulations and analytical modeling
- Effect of different sizing formulations on the overall joint performance
- Fatigue performance
- Microstructural characterization and Scanning electron microscope (SEM)

Conclusion
- The joint tensile strength is inversely proportional to the scarf angle
- The efficiency of tested joint configurations ranged from 15 to 100%
- 19-step joints exhibited evidence of fiber rupture
- A progressive failure was observed

Acknowledgements
The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001333.