Modeling and Validation of 3D Printed PAEK Composites

Soodebah Sharafi, Ph.D.M.E.², Prof. Michael H. Santare², Prof. Suresh G. Advani^{1,2} University of Delaware | Center for Composite Materials¹ | Department of Material Science and Engineering²

PAEK (poly aryl-ether-ketone)

Family of high-performance thermoplastic materials known for high:

temperatures (150 -158 0c) Glass-transition Melting & processing temperature (400-470 0c)

Processing high temperature polymers are difficult

Post processing for intricate PAEK composite parts are labor intensive

Its costly and should be matched to product needs

Few machines are commercially available to print high quality aerospace grade parts

UD-CCM is the first university to have dual nozzle commercial 3D printer

PAEK Properties and Applications

- Mechanical Robustness UAV (Lightweight, High Stiffness & Impact Resistance Structure) \rightarrow Aviation Industry
- **Resistance to Hydrolysis (don't break under sterilization)** → Biomedical Industry **Gears and Medical Implants**
- **Corrosion and Chemical Resistance Chemical Pumps** \rightarrow Chemical Plants
- **Electrical Insulator High Voltage Appliances** → Electronics Sectors
- Thermal Stability Valves, Seal, Bearing \rightarrow Oil and Gas Industry

PEAK Additive Manufacturing

- (complicated and customized Design freedom components)
- Accelerated speed of manufacturing
- Reduced the assembly cost, machining

Challenges

- Operating **3D** printing machine and troubleshooting (nozzle clog and gap with build plate)
- **Offline design** (optimize design and processing parameters)
- 3D printed part's properties affected by void content) processing (shapes and and parameters.
- Structural integrity depends on offline design and 3D printing machine capabilities.
- Diverse processing parameters (infill density, infill shape, extrusion width layer height, bed temperature, extrusion temperature, overlap between deposited lines, raster angle, nozzle size, deposition speed, no. of shells and support layers) cause variability.
- **Goal : Optimize Layer Adhesion**
- **Bead to bead adhesion (Interlayer)**
- Between layer adhesion (Intralayer): along deposition direction
- **Between Layer Adhesion (Translaminar):** perpendicular to the deposition direction

Modeling Framework

- Predict effect of processing parameters on mechanical performance
- Sensitivity analysis to identify major processing parameters
- Reduce number of experiments
- Optimize individual processing parameters to obtain tailored mechanical properties (toughness or stiffness)

Approach

Model Parameters

Flat On edge

60

5 40 -

t 20 -

Experimental characterization	Material parameters										
	Material model parameters				a) PAEK b) ABS				Material deformation		
										parameter	s
	Intrinsic				Extrinsic: Experiment				Plasticity model: Isotropic hardening		
	Density t mm3	Young modulus (MPa)	Strength (MPa)	Poisson ratio	Transition stress (MPa)	Raster angle	Bonded height (mm)	Bonded width (mm)	Modulus (MPa)	Exponent	Linear modulus (MPa)
	a)1.4 <i>e</i> ⁻⁹	4100	75	0.378	12	0/90	0.3	0.1	35	300	250
	<i>b</i>)1.49 <i>e</i> ⁻⁹	2100	35	0.399	8	0/90	0.025	0.1	30	70	15
Micro scale											
			RVE —	Differ	ent sh	apes	of vo	oids			
						$\left \right\rangle$					
0 0.01 0.02 0.03 Strain11								<u> </u>			

Design of Experiments

- Using proposed Taguchi method considering only two intensities for each variables: we need 12 runs to find major parameters.
- Total number of samples using ASTM standard:
- 60 samples

Variables	Intensity	Intensity 2		
	1(weakest)	(Strongest)		
1)Bed temperature	160	200(AM)		
2)Nozzle temperature	430	470		
3)Deposition speed(mm/min)	1200(0.6)	2400(0.4)		
4)Raster angle	-45/45	0/90		
5)Infill density (void content)	50	100		
6)Infill shape	Full honeycomb	rectilinear		
7)Layer height	0.125	0.25		
8)Outline overlap	10%	90%		
9)Outline shells	2	4		
10)Extrusion width	120	105		
11)Support layer	2	5		

Predictions Identify Model to **Important Process Parameters**

The sensitivity analysis shows parameters in blue have highest effect on deflection at break and stiffness.

20

Conclusions

Reference:

1) S. Sharafi, M. H. Santare, J. Gerdes, and S. G. Advani, "A review of factors that influence the fracture toughness of extrusion-based additively manufactured polymer and polymer composites," Additive Manufacturing., vol. 38, p. 101830, 2021, doi: https://doi.org/10.1016/j.addma.2020.101830.

2) S. Sharafi, M. H. Santare, J. Gerdes, and S. G. Advani, "A multiscale modeling approach of the Fused Filament Fabrication process to predict the mechanical response of 3D printed parts," Additive Manufacturing, vol. 51, p. 102597, 2022, doi: https://doi.org/10.1016/j.addma.2022.102597.

Acknowledgements

"Research was sponsored by the U.S. Army CCDC Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-18-2-0299. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein."

Number of samples needed using proposed modeling:

lition	Temp	Speed	angle	Density	shape	height	overlap	shells	support	width	Deflection(mm)
				infill							-Force(N)
	430 k	1200(0.6)	+-45	50%	HC	0.125	10%	2	2	120	9.96 -1300
	430 k	1200(0.6)	+-45	50%	RC	0.25	90%	4	5	105	<u>11.47 -</u> 2100
	430 k	2400(0.4)	0/90	100%	HC	0.125	10%	4	5	105	10.6 -2000
	470k	1200(0.6)	0/90	100%	HC	0.25	90%	2	5	120	10.6 -2100
	470k	2400(0.4)	+-45	100%	RC	0.125	90%	2	2	105	10.37 -2200
	470k	2400(0.4)	0/90	50%	RC	0.25	10%	4	2	120	12.7 -1550
	430 k	2400(0.4)	0/90	50%	HC	0.25	90%	2	2	105	8.4 -1250
	430 k	2400(0.4)	+-45	100%	RC	0.25	10%	2	5	120	10.89 -2200
	430 k	1200(0.6)	0/90	100%	RC	0.125	90%	4	2	120	<u>11.63 -</u> 2200
	470k	2400(0.4)	+-45	50%	HC	0.125	90%	4	5	105	9.47 -1500
	470k	1200(0.6)	0/90	50%	RC	0.125	10%	2	5	105	<u>12.57 -</u> 1600
	470k	2400(0.4)	+-45	100%	HC	0.25	10%	4	2	120	9.98 -2250

Developed Dual scale modeling approach with Digimat software (for the micro-scale) and ANSYS software (for the macro-scale) to predict mechanical properties of additively manufactured composites.

The mechanical properties determined at the RVE scale can be allocated to the manufacturing tool at the ANSYS mesh locations to scale up properties and apply the macroscale boundary conditions and loading condition to determine deformation at failure stress.

PAEK and ABS materials are modeled and show good agreement with experimental results

Design of experiment reduces the number of experiments needed to identify main processing parameters.