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Laminate Fabrication
• High fiber volume fraction (FVF) and
potential hybridization requirements required
a new laminate fabrication methodology to
be developed
• A wet-layup/compression molding hybrid
method was developed to achieve >65%
FVF with <1% void content was developed
show in the fig. 4

• Using this methodology, 1” thick samples
were fabricated for Depth of Penetration
(DoP) tests, ¼” thick samples were made for
thin-laminate Ballistic Limit (BL) tests, and
¾” thick FGM samples were made for the
Capstone ballistic tests

Introduction
• Current structural/armor GFRP
components are made using a woven S-2
Glass infused with SC-15 toughened epoxy
system and are not through thickness
functionalized for optimum performance
• In this part of the program utilizes a
materials by design (MbD) approach to
improve the protective properties of a stand
alone GFRP armor laminates
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Materials and Properties
• S-2 Glass with 463 and 933 sizing
packages were used in this study
• Epoxy systems including SC-15,
DER353/PACM, TGDDM, and a modified
TGDDM, and a custom synthesized furan-
based epoxy were tested
• The fiber, matrix, and fiber/matrix
properties are presented below in Fig 4.

Strike Face Down Selection
• Strike face and backing have different
needs ie. High penetration resistance for
strike and high in-plane tension for the back
face
• The strike face material down select was
conducted using the DoP test
• Top performer had a >25% reduction in
DoP by controlling the damage mode, seen
in Fig. 6

Conclusions
• MbD approach was successfully
implemented to improve the penetration
resistance of GFRP through material design
• This work shows the significance of
considering the fiber, matrix, and fiber/matrix
interface as a system and the proper
design/selection can influence the damage
mode and extent, ultimately influencing the
performance
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Penetration in GFRP
• Penetration event in GFRP
is divided into 5 phases shown
in Fig. 2, according to Gama2

• These phases have different
damage modes and thus,
require different properties
• Through thickness
functionalization is desirable to
meet the needs of phase I-V
throughout the impact event
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Fig. 2: Phases of a 
penetration in a thick 
section composite2
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Fig. 3: Schematic of a 
FGM design for armor 
applications

Fig. 4: Top Left: Fiber glass strength comparisons3, Top Right: Quasi-static 
Bottom and Left: Dynamic compression data for the resins, and Bottom Right: 
Fiber/matrix interface properties for the sizing/resin combinations
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Fig. 1: Left: Army armored vehicle1 and Right: GFRP laminate being impacted at 
high velocities

Fig. 5: Schematic of the hybrid wet layup/compression molding process 
developed for high-FVF, low-void content structural-protective GFRP laminates
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Fig. 6: Top Left: Schematic of the DoP test, Bottom Left: Sectioned laminates 
showing DoP, and Right: DoP vs impact velocity for key material systems

Back Face Down Selection
• The back face requires high in-plane
tension and the ability to delaminate
extensively to “catch” the projectile, tested
using a thin laminate BL test, seen in Fig 7
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Fig. 7: Top Left: Schematic of the BL test, Bottom Left: shows the extent of 
delamination, and Right: Residual velocity vs impact velocity

Path Forward
• Custom tailored interfaces can be
synthesized onto the S-2 Glass®
• A Physics Informed Machine Learning
platform and a complimentary vapor
deposition approach is being developed to
optimized the interface morphology to
maximize energy absorption

FGM Design and Performance
• The top performer from
the DoP and the thin
laminate BL was used in a
2:1 thickness ratio to
create the FGM design
seen in Fig. 8 and tested
using a BL test with ¾”
thick laminates
• Damage mode was controlled and a the
FGM design absorbed >30% more energy for
comparable areal density

Fig. 10: Interface tailoring infrastructure development 
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Fig. 9: Damage comparison of the 
strike and back face between the 
baseline and FGM

• The back face will require high in-plane
tension but lower interlaminar fracture
toughness to absorb energy though
delamination

• The different phases of a
penetration require different
properties
• By functionally grading the
through thickness properties to
create a functionally graded
material (FGM) the material
can be tailored to meet the
specific needs, schematic seen
in Fig 3.
• The strike face needs high
penetration resistance through
high punch crush and punch
shear strength
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