DURABILITY OF FRP COMPOSITE RETROFITS AFTER SERVICE IN A SUBARCTIC ENVIRONMENT

Sandra Milev (Ph.D.CE)¹, David G. Goodwin Jr.², Jovan Tatar¹ ¹University of Delaware | Center for Composite Materials | Department of Civil and Environmental Engineering ²National Institute of Standards and Technology

Motivation and objective

- Motivation: A lack of data FRP's long-term on from field performance studies.
- The objective: Evaluate effects natural the OŤ exposure on FRP retrofits after being in service for 10-15 years in Alaska's climate conditions.

Repair and strengthening of building structural elements with EBFRP

Experimental methods

Pull-off bond tests, spectroscopy and calorimetry were conducted on FRP samples collected from the McKinley Tower (MKT, retrofitted with GFRP) and Ted Stevens International Airport (TSIA, retrofitted with CFRP).

Inspected buildings

University of The Delaware, inspections of MKT and TSIA in 2019.

Differential Scanning Calorimetry

This work is supported by the National Science Foundation RAPID Award #1916972.