IMPROVING DELAMINATION RESISTANCE AND STIFFNESS-RETENTION IN THICK SECTION COMPOSITES USING COMPLIANT INTERLAYERS

Shashank Sharma, MBA¹, Edward Lake¹ University of Delaware | Center for Composite Materials¹ | Department of Mechanical Engineering²

MEDE Objective Function-2 (Materials in Extreme Dynamic Environments)

Improve delamination resistance (durability) and stiffness-retention (damage tolerance) in plainweave (PW) S-2 glass epoxy thick section composites under high energy impacts.

Delamination- Main failure mechanism in high energy low velocity impacts (LVI) and causes a significant reduction in stiffness (limiting life after hit).

Interlayer toughening : Thin and compliant interlayers (thermoplastic polyurethane films) selectively placed through the thickness improves delamination resistance and thus, helps in retention of stiffness.

Background & Motivation

The Alfredsson-Gillespie analytical solution (2008) showed that a thin and compliant interlayer decouples the section, disrupting the shear stress-strain profile in the layered beam under fle

Reduction in transverse shear stress -- was also shown using the ordinary beam theory (Gere, Timoshenko, 1984) although it predicted a decrease in compliance (C_{bt})

Paul D. Samuel (Ph.D.M.E.)², Prof. John W. Gillespie, Jr.^{1,2}, Dr. Bazle Z. (Gama) Haque^{1,2}, Dr. Nicholas Shevchenko¹, Dr. Shridhar Yarlagadda¹, Aristedes Yiournas¹,

Reducing Interlaminar Shear Stress

The interlayer reduces transverse shear stress (decoupling) and deflects crack growth in Mode-II (mitigating the propagation of delamination).

Enhancement of shear strength under transverse compression: 'A phenomenological Mohr–Coulomb failure criterion for composite laminates under interlaminar shear and compression' (Xiao, Gillespie, 2007).

$$\left(\frac{\sigma_{3T}}{S_{3T}}\right)^{2} + \left(\frac{\tau_{23}}{S_{230} + S_{SRC}}\right)^{2} + \left(\frac{\tau_{31}}{S_{130} + S_{SRC}}\right)^{2} + \left(\frac{\left(\frac{\sigma_{3c}}{S_{3c}}\right) - \beta}{1 - \beta}\right)^{2} = 1$$

 $S_{SRC} = \sigma_{3c} Tan(\varphi)$

$$Tan(\varphi) = f_o\{1 - \alpha \left(\frac{\sigma_{3c}}{S_{3c}}\right)$$

Strain rate enhancement of shear strength: Quasi-static shear strength S_{23} , S_{31} (58 MPa) appreciates at strain rates in these dynamic impacts.

Predictive Modeling (MAT162, LS-Dyna)

Baseline panel (44 layers of 24oz/yd² PW 5x5 S-2 glass/SC-15 epoxy matrix).

Interlayer (TPU) panel (44 layers of 24oz/yd² PW 5x5 S-2 glass/SC-15 epoxy matrix with ten (10) Thermoplastic Polyurethane (TPU) [UAF-472] Interlayers.

TPU modeled as bilinear elastic-plastic (MAT003) with initial modulus of 245 MPa, plastic modulus of 6.9 MPa, yield strain of 3.7% (Boyd et al., 2018)

- •Panel Dim: 711.2 mm x 711.2 mm and 28-32 mm thick.
- •FEM: 44 layers with 3 elements through thickness per layer.
- Material Model: MAT162 for S-2 glass/SC-15 epoxy matrix
- TPU behavior: Non-linear, large deformation/high shear strain and rate dependent.

• Impact Energy : 7.6 kJ

Through-transmission ultrasound scanning (C-Scans) was done before and after each impact to track the spread of delamination.

Stereo Digital Image Correlation (DIC) used to measure back face deflections and strains.

Stiffness(*K*) **retention** of the panels is determined from the dynamic load-deflection curves of the first & second impact. (K_{Second Impact}) K_{Second} Impact

Reduction in peak transverse shear (σ_{ZX}, σ_{YZ}) stresses (57 % on average) between the Baseline and TPU panels.

Drop Experiments: High Energy Low Velocity Impact

- Four (4) dynamic impacts (7.4 kJ) i.e., two repeated impacts/ panel at the center.
- Drop Tower with catch-mechanism to record rebound height.

 $E_{Absorbed}$ $=\frac{1}{2}m_p(V_I^2-V_R^2)$

Research sponsored was Army the by Laboratory and was accomplished Research Cooperative Agreement Number under W911NF-12-2-0022.

Results

Transverse shear- interlaminar failure (delamination) is significant in Baseline panel.

Before Impact

First Impact

Delamination influenced dynamic stiffness(K) loss in the Baseline panel is significant. Stiffness retention at 44%.

Acknowledgements