CORRELATION OF THE GAS PERMEABILITY OF CARBON/CARBON COMPOSITES WITH THE POROSITY DEVELOPMENT

Tania Lavaggi² (Ph.D.M.E.), Faheem Muhammed³ (Ph.D.M.S.E.), Dr. Laure Moretti¹ (P.D.), Prof. John W. Gillespie Jr. ^{1,2,3}, Prof. Suresh G. Advani^{1,2} University of Delaware | Center for Composite Materials¹ | Department of Mechanical Engineering² | Department of Material Science and Engineering³

Introduction

Steps for the manufacturing of C/C composites

Densification process: repetition of the impregnation/carbonization processes for the manufacturing of Carbon/Carbon (C/C) composites.

Optimization of the densification process

- Identification of optimal pyrolysis cycle.
- Identification of optimal re-infiltration parameters.

Overview of the Research

Characterization of the permeability to gas of C/C composites

- Pulse-Decay Test
- Numerical Simulations

Characterization of the microstructure of C/C composites

 X-Ray Computed Tomography (CT)

$$\frac{\partial P}{\partial t} = \frac{K_i}{\varphi \mu} \frac{\partial}{\partial x} \left((P+b) \frac{\partial P}{\partial x} \right) \qquad K_g = K_i \left(1 + \frac{b}{P} \right)$$

Correlation of Permeability and Porosity of C/C Composites

Cycle 3

- Cycle 2 (Up to 250C)
- Cycle 2 (Up to 350C)

Cycle 3

- \bullet

Acknowledgements

Research was sponsored by the U.S. Army CCDC Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-18-2-0299.

Thanks to Dr. Thomas Cender and Dr. Pavel Simacek for their contribution to this research.

	Permeability [m ²] (Pore averaged)	Klinkenberg Parameter [Pa]	Porosity (From CT- scan)
1	4.94e-14	2.3e+03	22.36 %
2	0		3.25 %
2	3.48e-16	9.7e+03	10.75 %
3	1.81e-14	2.8e+03	19.39 %

Correlation of the permeability to gas with the connected porosity helps understand how the pyrolysis schedule the evolution of influences the microstructure in C/C composites.

The correlation helps design optimal pyrolysis schedules and optimal reinfiltration strategies for the fabrication of C/C composites.