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Objectives

 In the glass fiber-epoxy composite, 
interphase is a distinct region between fiber 
and epoxy matrix that develops during 
processing through diffusion and reaction 
between the matrix and the fiber sizing

 Interphase could have different morphology 
depending on processing and thickness 
could vary from few nanometers to tens of 
nanometers

 Since load is transferred through 
interphase, it controls composites strength, 
toughness, and damage modes

 In high-velocity impact, interphase could be 
subjected up to 1e12/s strain rate, and like 
many other materials interphase properties 
are also strain rate dependent

 Therefore, it is essential to understand the 
interphase properties tailoring mechanism 
at the atomistic scale as well as its strain 
rate-dependent responses

Fiber-Matrix Interphase System

 Establish a molecular dynamics (MD) 
based “Materials-by-Design” framework for 
composite interphase

 Develop strain-rate dependent traction law 
to bridge length scales in the finite element 
(FE) based continuum level micro-
mechanics modeling of composites
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 We are in the process of developing strain-
rate-dependent mixed-mode traction law

 Develop physics informed machine 
learning framework to design composite 
interphase for optimum strength and 
energy considering variability in interphase 
chemistry, topology, and strain rate

 We develop fiber-epoxy interphase with 
mono-layer 3-glycidoxypropyltrimethoxy 
silane (GPS)

 First, we deposit hydroxylated mono-layer 
silane on the silica surface at different 
number densities (0/nm2 to 3.9/nm2) and 
react them with the silica surface through 
condensation reaction

 In the second step, a mixture of the 
Epon828-Jeffamine® D-230 is put on the 
silica slab, equilibrated, and cured

 Condensation and curing reaction are 
modeled with AMBER based cross-linking 
algorithm

 The model is then equilibrated with reactive 
force field ReaxFF before being subjected to 
mechanical loading

Interphase Model Development Procedure

 Interphase thickness is determined from the 
Root Mean Squared Fluctuation method

 Interphase thickness is in the range of 1.3 to 
1.7 nm  for mono-layer silane 

Mode-I Loading

 Interphase is loaded in Mode-I at strain rates 
1e9/s to 1e16/s including quasi-static loading

 Quasi-static response is determined from the 
tens of relaxation simulations at different 
deformation states
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 Irrespective of 
interphase 
topology, peak 
traction and 
energy are highly 
strain-rate 
dependent and 
show characteristic 
S-shape response

 We successfully established the correlation 
between peak traction and energy as a 
function of silane number density and strain 
rate with the following equations. 

 The above correlations are used to predict  
simplistic bi-linear traction laws to use in FEA 

Quasi-static Response

Strain-rate 
Effects


	Slide Number 1

