Strain Rate Dependent Cohesive Traction Laws for Glass Fiber-Epoxy Interphase using Molecular Dynamics Simulations

Dr. Sanjib C. Chowdhury & Prof. John W. Gillespie, Jr. University of Delaware | Center for Composite Materials

Introduction

- In the glass fiber-epoxy composite, interphase is a distinct region between fiber and epoxy matrix that develops during processing through diffusion and reaction between the matrix and the fiber sizing
- Interphase could have different morphology depending on processing and thickness could vary from few nanometers to tens of nanometers
- Since load is transferred through interphase, it controls composites strength, toughness, and damage modes
- In high-velocity impact, interphase could be subjected up to 1e12/s strain rate, and like many other materials interphase properties are also strain rate dependent
- Therefore, it is essential to understand the interphase properties tailoring mechanism at the atomistic scale as well as its strain rate-dependent responses

Fiber-Matrix Interphase System

Objectives

- Establish a molecular dynamics (MD) based "Materials-by-Design" framework for composite interphase
- Develop strain-rate dependent traction law to bridge length scales in the finite element (FE) based continuum level micromechanics modeling of composites

Simulations Details

- We develop fiber-epoxy interphase with mono-layer 3-glycidoxypropyltrimethoxy silane (GPS)
- First, we deposit hydroxylated mono-layer silane on the silica surface at different number densities (0/nm² to 3.9/nm²) and react them with the silica surface through condensation reaction
- In the second step, a mixture of the Epon828-Jeffamine® D-230 is put on the silica slab, equilibrated, and cured
- Condensation and curing reaction are modeled with AMBER based cross-linking algorithm
- The model is then equilibrated with reactive force field ReaxFF before being subjected to mechanical loading

Interphase Model Development Procedure

- Interphase thickness is determined from the Root Mean Squared Fluctuation method Interphase thickness is in the range of 1.3 to
 - 1.7 nm for mono-layer silane

Results and Discussion

Interphase is loaded in Mode-I at strain rates 1e9/s to 1e16/s including quasi-static loading Quasi-static response is determined from the tens of relaxation simulations at different deformation states

between peak traction and energy as a function of silane number density and strain rate with the following equations.

Peak Traction:	
$T = [T_{0,QS}(1 + a_T * D_{SN})][1 + b_T \dot{\varepsilon}^{c_T}], \text{ for } \dot{\varepsilon} \le 1e12/s$	(1a)
$T = [T_{0,QS}(1 + a_T * D_{SN})] \left[1 + b_T \dot{\varepsilon}_{1,T}^{c_T} \right] + [g_T + h_T * D_{SN}] exp\left(-(m_T - n_T * D_{SN}) \dot{\varepsilon} / \dot{\varepsilon}_{2,T} \right), \text{ for } \dot{\varepsilon} > 1e12/s$	(1b)
Energy:	
$G = \left[G_{0,QS}\left(a_{1,G} - \left(a_{1,G} - a_{2,G}\right)exp\left(-D_{SN}/a_{3,G}\right)\right)\right]\left[1 + b_G\dot{\varepsilon}^{c_G}\right], \text{ for } \dot{\varepsilon} \le 1e12/s$	(2a)
$G = \left[G_{0,QS}\left(a_{1,G} - \left(a_{1,G} - a_{2,G}\right)exp\left(-D_{SN}/a_{3,G}\right)\right)\right]\left[1 + b_{G}\dot{\varepsilon}_{1,G}{}^{c_{G}}\right] + [g_{G} + h_{G} * D_{SN}]exp\left(-(m_{G} - n_{G} * D_{SN})\dot{\varepsilon}/\dot{\varepsilon}_{Ref,G}\right), \text{ for } \dot{\varepsilon} > 1e12/s$	(2b)
Stiffness:	
$K = [K_{QS} + a_K \dot{\varepsilon}^{b_K}], \text{ for } \dot{\varepsilon} \le 1e12/s$	(3a)
$K = [K_{os} + a_{\mu}\dot{\epsilon}_{1\mu}^{b_{K}}] + c_{\mu}exp(-\dot{\epsilon}/\dot{\epsilon}_{2\mu})$, for $\dot{\epsilon} > 1e12/s$	(3b)

 $K = [K_{QS} + a_{K}\dot{\varepsilon}_{1,K}^{b_{K}}] + c_{K}exp(-\dot{\varepsilon}/\dot{\varepsilon}_{2,K}), \text{ for } \dot{\varepsilon} > 1e12/s$

T is the traction, G is the energy, $\dot{\varepsilon}$ is the strain rate, D_{SN} is the silane number density, $T_{0.OS}$ and $G_{0.0S}$ are the quasi-static traction and energy for the interphase without silane.

The above correlations are used to predict simplistic bi-linear traction laws to use in FEA

Path Forward

Acknowledgements

This work is supported by the Army Research Laboratory through the Materials in Extreme Dynamic Environment (MEDE) program.

We are in the process of developing strainrate-dependent mixed-mode traction law

Develop physics informed machine learning framework to design composite interphase for optimum strength and energy considering variability in interphase chemistry, topology, and strain rate

References

Chowdhury et al., Glass fiber-epoxy interactions in the presence of silane: A molecular dynamics study, Applied Surface Science 2021, 542:148738

Chowdhury et al., Strain-Rate Dependent Mode I Cohesive Traction Laws for Glass Fiber-Epoxy Interphase using Molecular **Dynamics Simulations.** Composites Part B 2022, 237:109877