AN INVESTIGATION OF SMALL MOLECULE PENETRANTS INTO **TRANSPARENT ADHESIVES**

Introduction

- Transparent laminates armor are important for protecting soldiers in combat scenarios
- Current adhesives in transparent armor laminates have shown failure when exposed to chemicals
- Better understanding the affect of these chemicals can give insight on future adhesive designs

Methodology

- thermoplastic Adhesive polyurethanes were exposed to (TPU) water and diisodecyl phthalate (DIDP)
- Bulk TPU was then tested to see the impact of the materials
- PC-TPU lap shear samples were made and exposed to measure the affects on interfaces

PC-TPU Lap Shear Sample Diagram

Molecular modeling simulation were then made to gain insight into material behavior

Chemical Exposure

- Both water and DIDP are adsorbed by the DIDP in bulk and lap shear samples
- DIDP has a much higher saturation point than water and causes pronounced swelling

Solvent	Temperature (C)	Saturation Mass %	% Volume Change
DIDP	25	30.78%	33.97%
DIDP	40	39.26%	42.18%
DIDP	70	59.00%	60.65%
Water	50	1.97%	1.32%

TPU Saturation Results

Bill Manning, M.S.E.E.², Prof. John W. Gillespie Jr.^{1,2}, Dr. Joseph M. Deitzel¹, Dr. Sanjib C. Chowdhury¹ University of Delaware | Center for Composite Materials¹ | Department of Material Science and Engineering²

Lap samples exposed to DIDP swell enough to cause delamination in samples at the interface

Lap Shear Results Conditioned TPU

Molecular Modeling

• TPU, PC and chemical penetrants are

Baseline vs DIDP Saturated TPU-PC Simulation

Acknowledgements

Research was sponsored by the U.S. Army CCDC Army Research Laboratory and was accomplished under Cooperative Agreement Number **W911NF-**18-2-0299.

Future Work

Fishing interface simulations quantifying difference in baseline saturated VS conditions

TPU simulations of all hard and soft segment molecules to measure their affect on Tg, Modulus, etc.

Analyzing bond breakage vs chain pull out on interface simulations