Motivation

- HexPly® M77 resin is a snap-cure resin that has potential for use especially in automotive parts production via TuFF system
- Curing times determined from DSC and cure prediction studies are:
 - <9 min at 120°C
 - <6 min at 130°C
 - <3 min at 140°C
 - <1.5 min at 150°C
- Interfacial Shear Strength (IFSS) testing is important to figure out the fiber resin adhesion behavior. Test results give an idea of their adhesion characteristics when they are used together in the same matrix in manufacturing composite materials
- Virgin T800 fibers were chosen because of their prevalent use in the TuFF process

Rheology and Test Parameters

- Rheology tests were performed to determine the ideal temperature for fiber insertion and to get best curing afterwards based on resin viscosity
 - From the rheology experiments it was determined that 80-100°C was the ideal temperature to insert the fiber
 - <150°C was expected to be the best cure temperature, as curing too quickly could result in air bubbles stuck in the crucible
 - Air bubbles stuck in the structure may cause changes in the determined embedded lengths of inserted fibers
 - 75 µm was chosen as the nominal embedded length based on the expected IFSS
 - The final determined parameters were:
 - Melt at 100°C for 2 minutes to allow maximum melting without advancement of early cure
 - Cure at 130°C for 10 minutes to ensure full cure

Testing and Mechanism

- Samples were made using the Textechno Fimabond ('a' below) and tested in the Textechno Favimat ('b' below) with the fiber pullout fixture.
- Sample preparation chamber was purged with argon at 1 L/minute.
- All tests were conducted at 0.1 mm/min extension rate
 - Embedded lengths came out 20-40% higher than intended
 - This is because of the nature of the snap-cure resin
 - The fiber insert time is very quick

Results and Future Work

- 7 usable samples were analyzed using their embedded lengths, measured diameters, and max break forces (seen below) to determine their IFSS between the M77 resin and Virgin T800 fibers

Acknowledgements

- This material is based upon work supported by Composites Automation LLC under prime contract # DE-SC0019970 by the U.S. Department of Energy Office, Office of Science SC-1.