EFFECT OF SUB-LAMINATE STACKING SEQUENCE ON THE TRANSVERSE IMPACT AND PERFORATION BEHAVIOR OF MULTI-LAYER SOFT-BODY ARMOR PACK (SBAP)

Eli Bogetti (MME)² and Bazle Z. (Gama) Haque, Ph.D.^{1,2} University of Delaware | Center for Composite Materials¹ | Department of Mechanical Engineering²

Introduction

- SBAPs are components in body armor and are composed of Dyneema SK76, [0/90] soft ballistic sub-laminates (SBSL)
- Orientation of SBSL has an affect on the performance of the SBAP

Objectives

- Compare the minimum perforation velocity of different stacking sequences of an 8-Layer SBAP
- Explore the affect of the stacking sequence on the deformation cone shape of the 8-Layer SBAP

Structural Hierarchy of Materials by Design for Soldier Protection

Stacking Sequences

- Model a 360mm x 360mm 8-Layer SBAP with five different stacking sequences (Layups)
- Denoting a single layer [0/90] SBSL as $[\beta]^{SBSL}$ (where β is the material angle of [0/90] SBSL with respect to reference material direction 1 or [0])

Perforation Mechanics

- Simulated impact velocities ranging from 100 m/s to 400 m/s under a right circular cylinder impactor with a diameter of 12.7 mm
- Plot final velocity (V_F) vs impact velocity (V_I) to determine minimum perforation velocity

• The V_F - V_I curve for each layup can be divided into three regions

- 1. No Perforation: initial linear trend
- 2. Partial Perforation: nonlinear deviation from initial linear trend
- 3. Complete Perforation: jump in V_F

Deformation Mechanics

Deformation cone shape is given by back face deflection

Back face deflection causes blunt force trauma to the wearer

Layer 8 (impact layer)

Baseline Layup 1: [0]^{SBSL}₈

Layup 5: [0/13/26/39/51/64/77/90]^{SBSL}

- Back face deflection over time, dark red = 0ms and dark blue = 8ms
- On impact layer, deformation cone begins as a diamond and becomes circular
- Rear/back face shows "spokes", four for each unique material angle

Summary and Conclusion

Future Work

References

Acknowledgements

Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-21-2-0208, Physics of Soldier Protection program.

Baseline Layup 1 $[0]_8^{SBSL}$ has the highest minimum perforation velocity range

• The effect of the stacking sequence on the shape of the deformation cone is present on the rear/back face

• Perform the same study on a 32-Layer SBAP to see if results are consistent at different layer counts

 Perform a similar study looking at the interlaminar stacking sequence of the SBSL

• B. Z. Haque, M. A. Ali, and J. W. Gillespie, "Modeling transverse impact on UHMWPE soft ballistic sublaminate"

• B. Z. Haque and J. W. Gillespie, "Perforation mechanics of UHMWPE soft ballistic sub-laminate and soft ballistic armor pack: A finite element study"

