Rate Dependent Non-Linear Progressive Composite Damage Model (rdnlpCDM) UMAT41
B Haque, & J Gillespie Jr. ARL Collaborators: R Becker, T Zhang, D O’Brien

Key Goals and Technical Approach

- MAT162 in LS-DYNA can model rate dependent progressive damage, with limitations, not available for modification due to copyright
- Key goals are to develop a new rate-dependent non-linear progressive composite damage model (rdnlpCDM) UMAT41, which will include:
 1. Rate functions for all moduli and strength
 2. New DoP failure model modeling crush
 3. New punch-shear & tension shear model
 4. Compression shear model
 5. In-plane, and interlaminar shear
 6. Compression depen
- Validate the new UMAT41 by simulation model validating experiments

Major Results, Key Accomplishments

- UMAT41 Salient Features
 1. Rate functions for all moduli and strength
 2. Damage Functions for all moduli and strength
 3. Maximum Stress Progressive Damage
 4. Quadratic HASHIN Progressive Damage
 5. Xiao-Gillespie Failure Equation
 6. Ramberg Osgood In-plane, and interlaminar shear
 7. Modulus in tension and compression are different
 8. Robust erosion criteria
 9. Load-Unload behavior, elastic & Progressive damage
Progressive Damage Failure Functions

\[f(m, \varepsilon) = F_{min} + (1 - F_{min}) \exp \left(\frac{1}{m} \left(1 - \frac{\varepsilon}{\varepsilon_Y} \right)^m \right) \]

UMAT41 comparison in LS-Dyna and ALE3D

MAT162 Modeling Examples

- Maximum Stress Progressive Damage UMAT41 is transitioned
- Quadratic Progressive Damage Models are in Progress
- Stress and Strain Invariant Damage Models are in Progress