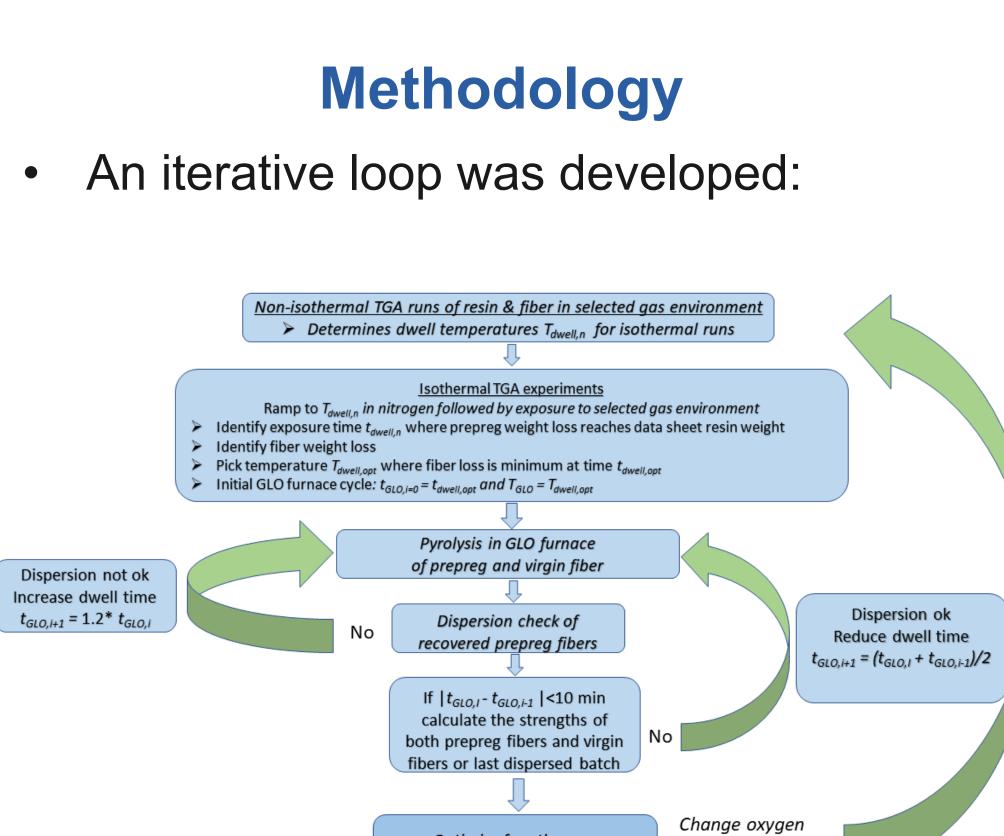
CLOSED LOOP RECYCLING OF CFRP INTO HIGHLY ALIGNED, HIGH PERFROMANCE SHORT FIBER COMPOSITES USING THE TUFF PROCESS: FIBER RECOVERY THROUGH PYROLYSIS

Neel Kher (B.CH.E.), Uday Kiran Balaga (M.S.M.E.), Dr. Dirk Heider, Dr. Joseph M. Deitzel, and Dr. Steve Sauerbrunn University of Delaware | Center for Composite Materials | Department of Chemical & Biomolecular Engineering


Introduction

- Producing carbon fibers is an energyintensive and expensive process
- Recovery solutions such as solvolysis and pyrolysis exist in order to recycle fibers from composite scrap
- Pyrolysis will be used, which involves decomposition at high temperatures
- Recovered fibers must exhibit high:
 - Modulus
 - Strength Retention
 - Interfacial Shear Strength to the polymer
- Goal is to retain 90 95% of virgin fiber properties, and to use fibers in the Tailored Universal Feedstock for Forming panels

Problem Specification

- Finding the ideal temperature for pyrolysis
- Temperature must allow for minimal fiber degradation and high rate of dispersion of fibers
- Need to develop a closed-loop, iterative pyrolysis cycle at ideal temperature

prepreg fiber is placed in a Thermogravimetric Analysis (TGA) to find the ideal dwell temperature

ptimize for other ga

composition in

environment

- Once the temperature is found, the pyrolysis is to be carried out in a GLO furnace
- Fibers are placed under a Nitrogen environment when heating up to the ideal temperature to avoid premature fiber degradation
- Dwell time refers to the amount of time the fibers are exposed to an air environment once the ideal temperature is reached
- The air environment allows for oxidation occur, which removes and residual remains of the burned resin from the fibers
- After the dwell time, the fibers are again subjected to a Nitrogen environment as they cool to the setpoint of 30 °C
- Dispersion of fibers is then checked via submersion in 99.9% isopropyl alcohol
- Once perfect dwell time is found, strengths of fibers are tested and then are to be optimized for other gas environments

Results and Discussion

- Found 500 °C to be the ideal dwell temperature
 - GLO runs were conducted starting at the initial dwell time from the preliminary TGA run, 69 minutes
 - Iterated through dwell times of 69 minutes (a), 83 minutes (b), and 100 minutes (c)
 - **Dispersion analysis:**

(C)

showed 100 The minute run significantly better dispersion of short fibers than the previous two runs

Fibers still not **fully** dispersing at 100 minutes

the

CENTER FOR COMPOSITE MATERIALS

Summary and Conclusion

Higher dwell time leads to higher percentage of fibers dispersing

100 minute dwell time run exhibited best dispersion overall

For the future:

- look at additives that would help improve dispersion of fibers
- manufacture TuFF panels with dispersed fibers the to investigate their composite properties

Acknowledgements

This work is supported by SERDP through Composite Materials Research program.

