
Introduction

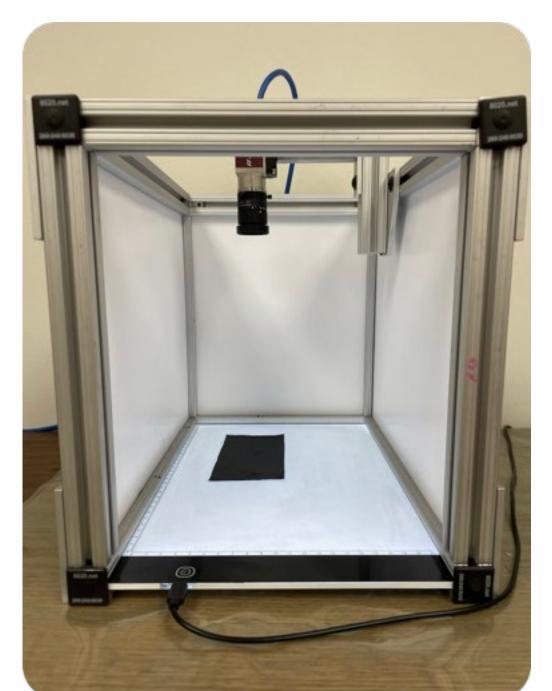
- Weight (FAW) Fiber is an Areal important material property for film impregnation processes as it affects prepreg quality
- Material that is out of specifications results in:
 - A. Low fiber volume fraction (FVF) material with low FAW
 - B. Dry, high void content and sections with high FAW

Identification

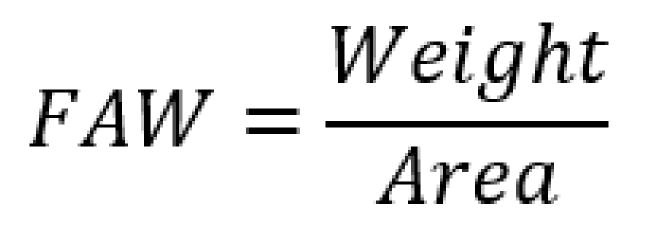
- samples are properly labeled to • All tracking of FAW correct ensure information
- Identifiers include *fabrication date* and distance from end of roll

Example Label

The Process of Measuring and Interpreting Areal Weight


Alex McWatters (H.S.), Alex Vanarelli, Dr. Dirk Heider Newark Charter High School, University of Delaware, Center for Composite Materials

Measurement Approach


- 1. Coupon strips are cut periodically (every 10ft) from continuous TuFF roll
- Consistency of FAW is measured during manufacture
- Coupon size (approx. 5" x 3") is large enough to allow for accurate weight and area measurement
- 2. Strips are dried on a heater to remove any excess water
- 3. Three pieces (left, right, middle) are cut from each strip and individually weighed

4. Samples are placed into a light box, which measures coupon area

6. The Labview software calculates FAW in *g / m² (gsm*):

		(
	•	
		6
		6
		C
ļ		
1		
1		
		_
1		
ł		_
		Δ
	-	
		5
		~
	(С
		С
		C
	(C
		C
	(
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	
	•	

Repeatability Study

One sample was measured ten times to assess repeatability of measurement approach

	FAW Repeatability Study Results			
	Area (m²)	Weight (g)	FAW (gsm)	
1	0.01089	0.7180	65.92	
2	0.01087	0.7176	66.00	
3	0.01088	0.7179	66.00	
4	0.01087	0.7177	66.02	
5	0.01087	0.7177	66.01	
6	0.01085	0.7175	66.12	
7	0.01086	0.7178	66.08	
8	0.01086	0.7175	66.09	
9	0.01090	0.7178	65.86	
10	0.01085	0.7174	66.09	
Average	0.01087	0.7177	66.02	
Std. Dev.	0.00002	0.0002	0.08	
COV (%)	0.18399	0.0279	0.12	
Average Std. Dev. COV (%)	0.00002	0.0002	0.08	

FAW varies more than area or weight Overall, there is a *low* margin of deviation

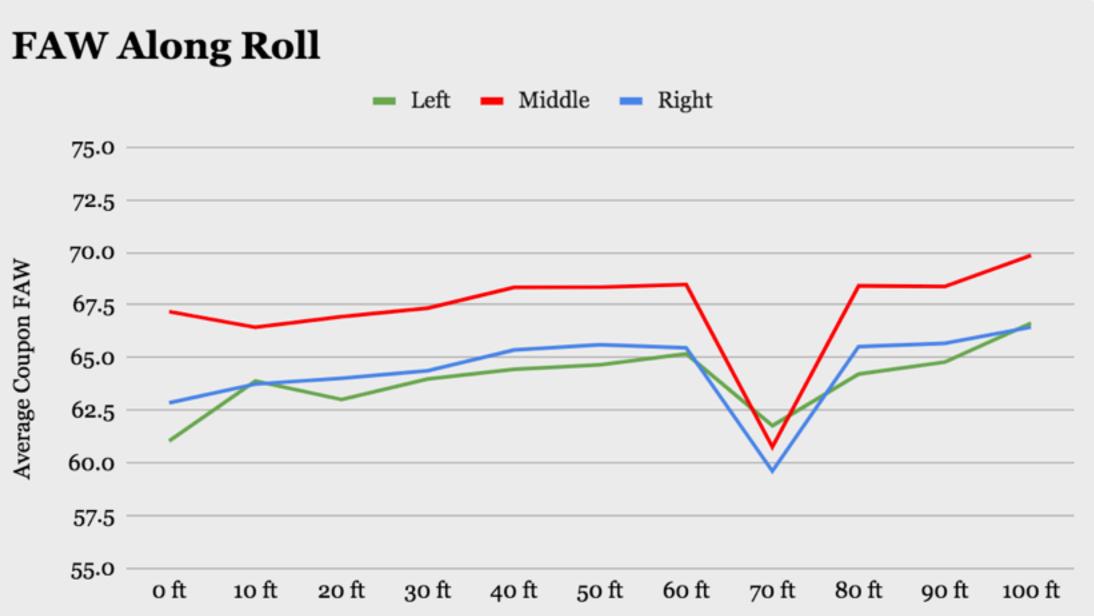
Sample ID 210708_T800_8L	
Other Material Info	
Other Material Info	
Other Material Info	
-30 LEFT ^	
ument Info	
CAMERA	

Labview Software, used to calculate FAW

75.0 72.560.0 57.5

1	
1	-
	std dev
AU	Avg/lay

Measurements show slightly higher FAW in the *center coupon* when compared to the side


coupons

Outlier at the 70 ft mark is most likely due to loss of material during the manufacturing process

• *Recommendation* is to adjust TuFF process to reduce variability

Acknowledgements This work is supported by the Office of Naval Research through the Advanced Materials Intelligent Processing Center.

Results

Distance from End of Roll

		201106_\	/R2_3IM7_8	3L	
belt speed			9.3		
length			100 ft		
	Ravg	M avg	Lavg	R-M-Lavg	Avg Dev. RML
	64.43	67.32	63.97	65.24	1.81
/	1.91	2.37	1.56	1.84	
yer	8.05	8.41	8.00	8.16	

