

Multi-Scale Modeling of Fiber-Matrix Interphase

Jian Gao (Drexel), Salman Zarrini (Drexel), Giuseppe Palmese (Drexel), Cameron F. Abrams (Drexel)

Sanjib C. Chowdhury (UDel), Jejoon Yeon (UDel), John W. Gillespie Jr. (UDel), Robert M. Elder (ARL), Timothy W. Sirk (ARL),

Enterprise for Multi-scale Research of Materials

Red: Silane, Yellow: Fiber

(c) Silica-sizing mode

Major Results/Key Accomplishments

Silica-Sizing Interphase Modeling

Cyan: Film Former

(b) Silica Slat

Path Forward

Identify effects of pH and surfactant Understand the distribution of silane, shape and wettability of the FF particle

Silica-GPS-Epoxy Interphase Modeling

Identify damage mechanism and damage prone regions under mech. deformation (equivalent to zero thickness cohesive zone) by inserting crack in the damage

RT to 60 ° N-R₂

Transitions/Impact

MD based materials-by-design framework will guide ARL/CMRG experimentalists to design optimum interphase structure

MD based interphase mixed-mode traction law will be used in composites micro-mechanics damage modeling

CENTER FOR COMPOSITE MATERIAI S