Modeling fibrillation as an energy absorbing mechanism in the transverse compression response of fibers

Jeffrey Staniszewski (SURVICE), Travis Bogetti (ARL)
Collaborators: Jan Andzelm (ARL), In-Chul Yeh (ARL), John Gillespie (UDel), Sanjib Chowdhury (UDel), Subramani Sockalingam (USC)

Modeling Approach

- Developed a heterogeneous fiber FE model to simulate fiber cross-section containing 250 macrofibrils
- Fibrillation mechanisms introduced through interfibrillar response (cohesive traction-separation behavior)
- Model used to predict nominal stress-strain response of single Kevlar fiber in transverse compression

Multiscale Modeling and Experiments

- Material properties and inter-microfibril traction laws are calculated with Steered Molecular Dynamics (SMD)
- Finite element (FE) models at intermediate length scales use SMD predictions to simulate macrofibril response
- Heterogeneous fiber FE models are used to investigate macrofibril interactions and predict single fiber experiments

Major Results/Key Accomplishments

- Parametric study conducted on the peak traction and ultimate separation of a bilinear cohesive zone model
- Cohesive energies ranged from 0.8-10 Jm⁻², largest stable energy of 4.2 Jm⁻² predicted fiber failure
- Experimental measurements of macrofibril interactions range from 10-20 Jm⁻²
- Additional energy absorbing mechanisms are required to capture macrofibril interactions

Bi-modal Distribution

- A small amount of strong interactions significantly effects the predicted transverse compressive response
- Strong interactions represent bridging microfibrils and tie chains, reflecting networked microstructure
- With compliance introduced through fibrillation, yield stress of transverse macrofibril response is increased to correlate to experimental results
- Contact width predictions improve upon continuum predictions, although fiber width expansion is underpredicted

Long Term Goals

- Significantly improve our fundamental understanding of the dominant mechanisms at sub-fiber length scales that govern the intrinsic macro-scale behavior of fibrillated fibers
- Understand the internal fibrillated microstructure of UHMWPE and Kevlar fibers
- Develop a model representation of the microstructure to capture the deformation mechanisms of the fiber
- Use the model to understand the role of the microstructure and guide new fiber development