TIME DOMAIN REFLECTOMETRY (TDR) SENSING APPROACH

Sensor Geometry → Material Properties

- TDR sensor output depends on sensor geometry and material properties. Impedance, $Z=f(\delta, w, \varepsilon, \mu)$
- Nanoscale reinforcements provide coupled electromagnetic-mechanical properties and can be used for sensing applications

BACKGROUND: DC-BASED IN SITU SENSING WITH CARBON NANOTUBES

- DC Based Sensing: 3-D percolating nanotube networks formed in the matrix which are sensitive to onset and accumulation of cracks.
- TDR based sensing: Location specific damage information. Multiple sensors can be replaced with a single TDR sensor.

APPROACH: NON-INVASIVE PARALLEL PLATE TRANSMISSION LINES

- Uniform penetration of electric and magnetic fields: can detect subsurface damage.
- Non invasive, unlike embedded sensors which themselves act as stress concentrations.
- Can be applied to existing structures.

INFLUENCE OF CNT ON STRAIN/TDR RESPONSE

- Neat Vinyl Ester does not show TDR response.
- 0.5 wt. % CNTs impart self-sensing capability.

SELECTIVELY MODIFIED MULTIFUNCTIONAL COMPOSITES

0/90/0/0 Composite with CNT modified transverse layer
Early onset of damage

SENSING RESPONSE

- Combined damage and strain sensing has been achieved.
- Onset and accumulation of micro-crack damage can be sensed.

- Sudden impedance increase can be observed near delamination in a 7 layer unidirectional composite.

ACKNOWLEDGEMENTS

This work is supported by Office of Naval Research through the Advanced Materials Intelligent Processing Center

© 2011, Pandey et al., all rights reserved