

MULTI-POINT TIME DOMAIN REFLECTOMETRY MEASUREMENT FOR CURE MONITORING

H. G. Kim (PD) and D. Heider

University of Delaware - Center for Composite Materials

SEGMENTED CURING EXPERIMENT

MULTI-POINT SENSING WITH SINGLE TRANSMISSION LINE

Cure of Composites \rightarrow Property Change (Mechanical, Physical and Electrical)

Volt Volt after cure after cure 4١ before cure before cure Λŧ Time Time Voltage change and Multi-point sensing

Response time change

Sensing points in single T/L by impedance change

With single T/L \rightarrow Effective

Making impedance changes by shunt capacitance

- Setting marker positions by using conductive materials.
- No curing agent is added to segment-A resin.

CURING EXPERIMENT RESULTS

Check the response time(Δt) at each segment

RT increase during the wetting: 0.092 ~ 0.121 RT decrease during the curing: 0.006 (very small) No cure on segment-A, but *dt* slightly decreased.

RESULTS: SC-15 EPOXY

CONCLUSIONS

Results: Cure reaction can be checked by change of the response time. Cure of each segment can be simultaneously detected by the data from single transmission line. SC-15 epoxy resin shows larger difference than Derakane 510A-40 vinyl ester resin.

Future Works: Get quantitative relationship between cure reactions and response time changes

ACKNOWLEDGEMENTS

This work is supported by the Office of Naval Research through the Advanced Materials Intelligent Processing Center.

METHODS TO IMPROVE HIGH SENSITIVITY

Indirect contact between T/L and resin \rightarrow Small change of response time

Direct contact between T/L and resin → Increasing the sensitivity

RESULTS: Derakane 510A-40

Sensor: Bare Copper Wire Curing Time: 2 Hours

Sensor: Bare Copper Wire Curing Time: 24 Hours