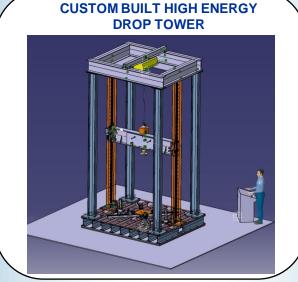


DEVELOPMENT OF HIGH ENERGY DROP TOWER CAPABILITY AT CCM


J. Tierney, T. Bogetti (ARL), and J.W. Gillespie Jr.

University of Delaware . Center for Composite Materials

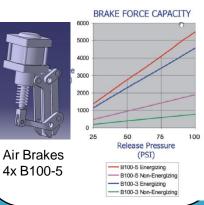
MODIFICATION

Develop cost effective generic high energy drop tower system for testing of panels, fastener assemblies and other structures including:

- Large flat panels with adjustable x-ypositioning
- Three point bend fixtures
- Direct impact fixtures
- Mobile fixtures (prior to field testing) and vehicle structures
- Impact node must be generic enough to accommodate large area impactor (blast) FSP type as well as custom nodes
- Base support must be rigid but allow for wide range of fixture assemblies

NEEDS

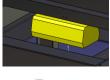
- ♦ ARL: Damage Tolerance Studies
- Studies for novel energy absorption methods and quasi static studies
- Mine Blast Fastener Design
- UD-Civil Engineering: Blast Damage of Bridge Structures
- CCM: Crash Testing of Filament wound cylinders for automobile industry
- Added capability for novel experiments, research and thesis work


CROSS BEAM DETAILS

Weighted Plates (100lb Increments)

Linear Bearings SNNC76 Precision rail Load Node Instron Load Cell

BRAKING SYSTEM



3IN BORE SHOCK ABSORBERS

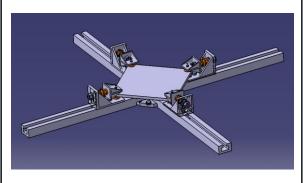
- CASE 1) 1,000 lbs to 3,000 lbs Free fall from 18ft: =>30 g's
- Stopping Force = 47,000 lbs. per shock absorber for the 3,000 lb. weight, 16,000 lbs. per shock absorber for a 1,000 lb. weight.
- ♦ CASE 2) Empty Weight 500 lbs free fall from 6 ft. => 19 g's. Stopping Force = 5,000 lbs. per shock absorber for the 500 lb. weight.

LIFT/DROP MECHANISMS

COFFING 2 Ton Hoist – EC4024-20 Electric Chain

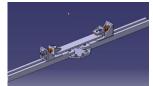
CER -12 4000lb Lift Capacity Circular Electric Lift Magnets

DEVELOPMENT OF HIGH ENERGY DROP TOWER CAPABILITY AT CCM

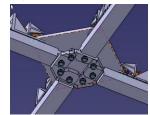


(Continued)

GENERIC IMPACT FIXTURE


- Generic fixture designed to ensure the following parameters are achieved:
- Ability to accurately measure tension, compression and shear in the fastener during loading
- Evaluation of various fastener concepts
- Consider variation in panel size and shape
- Ability to control boundary conditions
- Ability to use fixtures for other tests including three point bending of beams

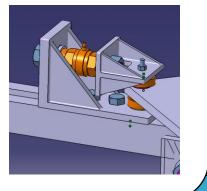
GENERIC IMPACT FIXTURE



 Fixture slides along T-Slot for accurate placement with respect to fastener hole Location

3-POINT BEND TESTING

Fixture easily modified for three point bend testing



 Fixture easily accommodates different panel dimensions

COMPRESSION-TENSION SENSORS

- PCB Compression and Tension Rings
- Used to measure initial Compression and Reaction Loading
- Addition of spherical ring for simply supported boundary condition

LINK SENSORS

PCB Link Sensor Bearings

- Used to Measure Shear Loading
- Removal of this connection results in simply supported condition
- Adjustable in vertical and horizontal direction

SUMMARY

- High energy drop tower will be invaluable for truly understanding impact behavior for multilayered systems
- Also aid in better understanding fixture requirements

ACKNOWLEDGEMENTS

This work is supported by the Army Research Laboratory through the Composite Materials Technology program