

© 2008, University of Delaware, all rights reserved

NIVERSITYOF **ELAWARE**

CDS: Composite Design Software Next Generation Interface for Design and Analysis of Composite Structures

MATERIAL INPUT

terials La	nina	Laminat	e Struct	ure Loadin	g Sour	ces	Scaling
New Mate	rial :			Export to:	Abaqus	Ansys WB	SimDesigner
View	Upda	te 🔲 Au	to Update Delet	Clear	Lamina 💌	Open	Save
Mechanical	Physical	Mi	icromechanics	Cure Kinetics	Failur	e	Non-Linear
Reduced Properties	Max Stree	ss Ma	x Strain Hydr	ostatic Tsai-Wu	Christenser	Feng	Hashin
			Enter Properties	Sources		🔺 Rec	luced Property
Longitudinal Young's Modul	us (Tension): E1T						E 🔺 🛛
Longitudinal Young's Modul	us (Compression)): E1T					J 🛒 76
Transverse Young's Modulu	s (Tension): E2T						Apply
Transverse Young's Modulu	s (Compression)	: E2T					Chdd.
Transverse Young's Modulu	s (Tension): E3T						
- Transverse Young's Modulu	s (Compression)	: E3T					
Poissons Ratio: v12							
Poissons Ratio: v13							
Poisson's Ratio: v23							
Shear Modulus: G12							
Charas Madulues, C42							

Atterial input for CDS includes the following properties

- Mechanical Properties, micromechanics input
- Physical Properties, cost
- Failure properties, reduced property sets
- Non-linear properties, MAT162 Property lists

EFFECTIVE PROPERTIES

w Current 🛛 🖌 Lamina	te 🗸 Select [0]	0	Add to	: My Mal	terials 💌 Na	ame		Save
operties	Resultants		St	resses/St	rains	ſ	Failure	
urrent Thin Section Prope	rties	וו			O	oserve Ply 🕂]	1
	Result	AB	D Matrix					
Tensile Modulus X-Direction: Ex	4172329.250000		748975	246918	l 0	0	0	0
Tensile Modulus Y-Direction: Ey	4172329.250000		246918	748975	0	0	0	0
Poisson's Ratio: vxy	0.329674		0	0	251029	0	0	0
Poisson's Ratio: vyx	0.329674		0	0	0	1802	446	21
Shear Modulus: Gxy	1568929.125000		0	0	0	446	1556	21
hermal Expansion Coeff: ax	0.000000		0	0	0	21	21	454
hermal Expansion Coeff: ay	0.000000		0	v		21	21	404
Thermal Expansion Coeff: axy	0.000000	ab	cd Matrix					
Moisture Expansion Coeff: bx	0.000000		1.50E-6	-493.84E-9	-146.49E-15	0.00E+0	0.00E+0	0.00E+0
Moisture Expansion Coeff: by	0.000000	-4	493.84E-9	1.50E-6	-2.57E-15	0.00E+0	0.00E+0	0.00E+0
Flexural Stiffness: Dx	1674.376099	-1	46.49E-15	-2.57E-15	3.98E-6	0.00E+0	0.00E+0	0.00E+0
ending Stiffness: E ^x I = 1 *Dx	3348.752197		0.00E+0	0.00E+0	0.00E+0	597.24E-6	-170.80E-6	-19.31E-6
Node 1 Frequency: w1	16.267310		0.00E+0	0.00E+0	0.00E+0	-170.80E-6	692.08E-6	-23.61E-6
vlode 1 Frequency: w2	65.069239		0.00E+0	0.00E+0	0.00E+0	-19.31E-6	-23.61E-6	2.20E-3
vlode 1 Frequency: w3	146.405787	0	Matrix for	nlv	•	0 Prime M	atrix for this	nlv
			1093264	274306	0 1	11093264	274306	1 0
			274306	806783	0	274306	806783	0
			0	0	300000	0	0	300000

Outputs results for:

- Thin or thick section effective properties
- Load and Strain Resultants

Outputs include internal stresses, strains, displacements and factors of safety from mechanical, thermal or moisture loading for thin, thick walled plates or cylinders

(Continued)

terials	Lamina	Lamin	ate	Stru	ucti	ure	Load	Cases	Sou	irces	S	caling		
New Lai	minate: [0/90/45	/-45]2s		Lar	mina	ate Ty	pe Thin	Laminat	e 🗸	Open		Save		
View	Add	date 🗌	Auto L	Jpdate	De	elete	Clear		Fill	Symmet	ric	Undo	51	
						_				-				
rkbench	Hide Workbeng	h Number	of Plies	16		La	minate	View S	ummary		Angle		~	
	Value		2222				Mater	ial	Thickness	Angle	рт 🛛	DM	~	
Resulting Thickness 0.800000 =n ⁻ t stial Bly Thickness 0.050			1	Kevlar L	amina	0.0100	0	0	0					
			2	Kevlar Lamina	amina	0.0100	90 0	0	0					
al Angle	0		IICKI IESS		=1	3	Kevlar L	amina	0.0100	45	45 0	0		
al Delta Temperatu	Delta Temperature 0			4	Kevlar Lamina	amina	0.0100	-45	0	0				
al Delta Moisture	0	Pop	ulate>	< Grah		5	Kevlar L	amina	0.0100	-45	0	0		
						6	Kevlar L	amina	0.0100	45	0	0		
Fill Symn	netric Clear	4 PI	ies 🗸	Laminate	e >	7	Kevlar L	amina	0.0100	90	0	0		
Material	Thickness	Angle I	DT			8	Kevlar L	amina	0.0100	0	0	0		
					÷.	9	Kevlar L	amina	0.0100	0	0	0		
II Insert Material						10	Kevlar L	amina	0.0100	90	0	0		
Insert Material						11	Kevlar L	amina	0.0100	45	0	0		
Insert Material		I												

Laminate input for CDS includes the following:

- Material Selection, thickness, angle, ply delta temperature and moisture, and winding tension (for cylinders)
- Workbench allows for rapid creation of multiple laminates for design studies

PROGRESSIVE FAILURE

esults vi	ew Current	Thin	- Structu	re 💌 Sele	et			1
	New	Mat.			Add to:	My Ma	terials 💌	Save
roperties		Resultants		Stresses/S	Strains		Failure	
ailure Criteria	Max Stre	55 • Direction						_
View	Load v's Strain	💌 ^r -Direction		Material	Failure Mode	A-m-mane X-Load	X-Direction	
Plo	t In Plane	e W-Directi		Kevlar Lamina	XIT.	2500.	0.0036	-1
5000-			2	Keyler Lemine				_
3000			3	KevlarLamina	XOTT,	2600.	0.0037,	_
4000			4	KevlarLamina	XY1T.	2600.	0.0037.	
4000-			S	Keylar Lamina	XYIT,	2600,	0.0037,	_
			6	KevlarLamina	XOLT.	2600.	0.0037.	
8 3000-			7	Keyler Lemine				
8			8	KevlarLamina	XIT.	2900.	0.0036	
S 2000-			9	Keyler Lemine	X17,	2500,	0.0036	
	1		10	KevlarLamina				
1000 -			11	KevlarLamina	XYIT.	2600.	0.0037.	
	1		12	Kevlar Lamina	XYLT,	2600,	0.0037,	
0-			13	KevlarLamina	XOTET.	2600.	0.0037.	
-0.02	5 0	0.025 0.05	0.075 14	Keylar Lamina	XYLT.	2600.	0.0037.	
Linear w		Strain	15	KevlarLamina				
			1.6	Manuface I recently as	1911	25.00	0.0024	_

- Progressive failure using max, stress and strain, Tsai-Wu failure results under multiaxial loading
- Outputs include, failure ply and mode, loadstrain plots, property reduction over loading

STRUCTURES

in Section Composites

Thick Section Composites

Thick Walled Cylinders

Hybrid Structures

CDS AVAILABILITY

Software available to current Industrial Consortium members, university researchers and collaborating government agencies

ACKNOWLEDGEMENTS

This work is supported by the Army Research Laboratory through the Composite Materials Technology program.