

INVESTIGATION OF SOUND AND VIBRATIONAL PERFORMANCE OF SANDWICH COMPOSITE STRUCTURES THROUGH WAVE NUMBER ANALYSIS

University of Delaware . Center for Composite Materials . Department of Mechanical Engineering

MOTIVATION

- Capitalizing on their high stiffness and strength-to-weight ratio, *aerospace structures* utilize composite and sandwich structures in their design.
- While these structures are mechanically superior, their acoustic properties are undesirable since they *radiate noise more* efficiently at lower vibrational frequencies (1000-2000Hz) compared to homogenous metals (>4000Hz).
- Therefore it is critical to *fundamentally* understand wave speeds in sandwich structures in order to develop new structures to mitigate noise propagation.

EXPERIMENTAL SETUP

- System utilizes a vibration isolation table to mitigate environmental vibrations.
- The goal is to measure the *coincidence frequency*, where the structural wave speeds become supersonic and radiate noise efficiently
- A micro-accelerometer measures the output acceleration, while an impedance head measures the input force.

J. Sargianis (MSME), H.I. Kim, J. Suhr

MATERIALS AND APPLICATIONS

The Frequency Response Function is measured at 64 equidistant points along the beam.

- yielding a *dispersion curve*.
- The relation between wave number and wave speed is seen below:

The coincidence frequency is where the dispersion curve intersects the speed of sound.

Common materials* in sandwich structures are:

Carbon Fiber and Glass Fiber Epoxy Face Sheets

Rohacell® Foam

*Materials provided by Boeing/M.C. Gill Corp

Using a Fourier Transform, this data transforms to the wave number (k) domain,

k = Wave number $\omega =$ Frequency (Hz) c = Wave speed

INVESTIGATION OF SOUND AND VIBRATIONAL PERFORMANCE OF SANDWICH COMPOSITE STRUCTURES THROUGH WAVE NUMBER ANALYSIS

Continued

CORK AGGLOMERATE CORE SANDWICH COMPOSITES

CONCLUSIONS

- The properties and geometry of the co material can have the most drastic effe on the acoustic and vibrational performance of sandwich composites.
- The relationship between core thickness and coincidence frequency is non-linea
- Cork may provide a solution to the sandwich structure-noise radiation problem due to its unique mechanical properties and energy absorption capabilities.

• Utilizing cork agglomerate as a core material in a sandwich structure provides unprecedented improvements in acoustic performance, showing no coincidence frequency in a 10 kHz range.

• Moreover, the cork agglomerate core beam showed up to 200% improvement in structural damping in low frequency ranges. These vibrational responses are often difficult to mitigate.

ore ect	 ACKNOWLEDGEMENTS This project was funded by the University of Delaware, The Boeing Company, and the NSF
ess ar.	 Thanks to Gopal P. Mathur, Technical Fellow at Boeing, Huntington Beach, CA for his help and insightful conversations.
	 Thanks to Erik Andres for mechanical testing.
	Thanks to Boeing and M.C. Gill Corporation for supplying materials.