MODELING AND TESTING OF BIOMIMETIC LAMINATE MATERIALS

T. Mulrooney (BME), A. Thomas (BME), L. Cheng (PhDME), A. Karlsson, J. Glancey

University of Delaware . Center for Composite Materials . Department of Mechanical Engineering

BACKGROUND

THE HOMARUS AMERICANUS SHELL

The exoskeleton of the Homarus americanus (American lobster) has 3 shell sections. The epicuticle is a waxy diffusion barrier on the surface. The exocuticle and endocuticle are the load-bearing portions. The load-bearing portions of a lobster shell are made of many uni-directional layers of chitin fibers that gradually rotate as they are stacked (i.e. a helix).

Objectives of this study:
To prototype and test composite laminates with similar helical structures and compare their structural performance to conventional composite layups.

ABAQUS FEA SIMULATION

LONG BEAM
- Length/thickness = 16
- SC8R Continuum Shell Elements
- 1 element through thickness
- Loaded at constant displacement to 5 mm

SHORT BEAM
- Length/thickness = 4
- SC8R Continuum Shell Elements
- 24-30 elements through thickness
- Loaded at constant displacement to 1/2 mm

COMPOSITE MANUFACTURING

Manufacturing Techniques

Geometric observations were used to form a method for stacking the helix structure with square plies. 3 points where the perimeters of the plies intersect yields a unique location for the next ply to be placed.

When two squares share the same center point, 8 equal triangles are formed.

The sum of the sides of a triangle equals the length of one side of a ply (i.e. L1 + L2 + L3)

Helix Lay-up cross section

RESULTS

Load(N) vs. Deflection(mm)

The above graph describes the load/deflection curves for the long beam biomimetic structure tests. The light blue line represents the FEA simulation. Five long beam (ASTM D790) and short beam (ASTM D2344) specimens were tested for every type of composite structure.

<table>
<thead>
<tr>
<th>Elastic Moduli (GPa) for long beam tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0/90]</td>
</tr>
<tr>
<td>experimental</td>
</tr>
<tr>
<td>25.53 +/- 0.55</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- A method was successfully developed to manufacture helically oriented composites.
- FEA results for the long beams matched experimental results well.
- FEA results for the short beam differed slightly from the experimental results.
- The helical structure demonstrated a higher elastic modulus than a conventional 0/90 layup.

ACKNOWLEDGEMENTS

This work is supported by the University of Delaware Undergraduate Research Program, the US Army Research Office and by the Center for Composite Materials. Special thanks to Anthony Thiravong and Hope Deffor for all of their help with manufacturing the composites.