COMPARISON OF MODELING APPROACHES TO RESIN FLOW SIMULATION IN LAYERED DRAPED TEXTILE PREFORMS

F. Martinez (Intern), P. Simacek, S. G. Advani

INTRODUCTION

Objective:
Liquid Composite Molding (LCM) simulation of structural parts with a complex and compound curvature using bidirectional woven fabrics reinforcements.

Issue:
This type of reinforcements undergoes a certain amount of deformation which may significantly affect the local values of permeability and fiber volume fraction (fvf).

Approach:
Following three modeling approaches are conducted and the results are compared:
- 3D flow simulation in which each sheared layer of fabric is assigned a permeability and a fvf based on the local shear.
- 3D flow simulation in which the permeability and the fvf of all the layers through the thickness is averaged.
- 2D flow simulation in which the permeability and the fvf of the various layers is averaged.

METHOD

- **Material Permeability and Volume fraction evolution with the shearing angle**
- **Local fibers orientation** (FIBERSIM2009)
- **2D Finite Element Model** (ABAQUS)

CONVERTER TOOL

- Ply by ply element permeability
- Ply by ply (fvf)

RESULTS: FILLING TIME

(time to fill in seconds)

PLATE:
- No shearing
- Only layup effect

HEMISPHERE:
- Layup and shearing due to draping effects

RESULTS :THROUGH THE THICKNESS FLOW PATTERN:

- **PLATE:**
 - Averaged Model: No effect of the shearing and the draping.
 - Ply by Ply Model: Effect of the shearing and the draping.

- **HEMISPHERE:**
 - Averaged Model: No effect of the shearing and the draping.
 - Ply by Ply Model: Effect of the shearing and the draping.

RESULTS: THROUGH THE THICKNESS FLOW PATTERN:

- **HEMISPHERE**
 - Averaged Model: No effect of the shearing and the draping.

CONCLUSIONS

- With the ply by ply model, the effects of the shearing and the draping are clearly visible and potential defects can occur due to non-uniform flow through the thickness.

- Three dimensional modeling is important and necessary to predict the fill time when the injection gate is restricted to one of the surfaces.

ACKNOWLEDGEMENTS

This work was funded by a National Science grant number 0856399.