Bodies moving at very high speeds through a rain-field can experience severe damage caused by the impingement of raindrops on their surfaces. This effect is usually referred to as “rain erosion”. Rain erosion has been a concern of the aviation and missile industries for many decades, and rain erosion resistance is an extremely important parameter of the materials interaction with the flight environment.

We present a new, inexpensive rain erosion test method, which creates a millimeter-size short water jets, moving with the speeds in the range of 1000 m/sec and higher. The method is based on the use of an apparatus which can be considered as a highly modified Split Hopkinson Pressure Bar.

Practical realization of the developed by us apparatus was made in collaboration with C. Morand, R. Lumpkins and J. Dignam, Mentin Sciences, Inc.

OBJECTIVES AND CONTENT

- Generation of Short Hypersonic Water Jet for Rain Erosion Testing of Materials
- S. Lopatnikov, J.W. Gillespie, Jr.
- University of Delaware . Center for Composite Materials .

CURRENT RAIN EROSION TEST METHODS-1.

- **Rotating arm**
- **Slab test**
 - Holloman Air Force Base, New Mexico, 6000’ rain field.
 - 7-Cone Test Fixture; 1280 m/sec

The advantage of the methods like the “rotating hand” and “slab test”, is that they are good enough to model rain environments, including distribution of droplets over sizes.

Their disadvantage is that it is about impossible, or at least extremely difficult to understand the physics of the material’s destruction.

CURRENT RAIN EROSION TEST METHODS-2.

- **Light gas gun specimen launch**
- **Single Impact Jet Apparatus (SIJA)**

Speed 1000-1500 m/sec

Singel test is only as a project

THE NEW METHOD - 1.

Split Bar Water Jet Generator (SBWJG)

THE NEW METHOD - 2.

Split Bar Water Jet Generator (SBWJG)

The proposed apparatus for generating high speed water jets is a highly modified version of the Split Hopkinson Pressure Bar in which the water layer represents the “sample”.

SIMPLIFIED THEORY

Single water jet apparatus

Flow in "accords"

The theoretically, in case of over-compression of the water by sandblasting, between materials with high impedance leads to the gain in jet speed in times in comparison with classic: SJA.

The best combination: transmitter bar has impedance significantly higher than incident bar. In turn, incident bar has impedance significantly higher than water.

ESTABLISHING OF THE EQUILIBRIUM PRESSURE

In reality, equilibrium within water layer is establishing not immediately. Multiple reflections are needed

Experimental results show that 4.5 reflections needed to reach observed jet velocity.

For taken parameters of water layer, characteristic time of the jet forming is in the range of 8-10 microseconds. This time defines the jet length.

PRACTICAL APPLICATIONS

Impact of the water jet moving with the velocity 1100 m/sec (particle velocity in striker bar 52.55 m/sec, maximal theoretical speed 1430 m/sec) onto a composite material.

Cumulative 6-drops impact on the cone under the attack angle 20 degrees. Special platform permits to regulate angle of attack.

© 2012, University of Delaware, all rights reserved