

OPTIMAL COMPOSITE PANEL CHARACTERISTICS FOR BLAST SENARIOS

Dennis Helmstetter (MCE) and Jennifer Righman McConnell

University of Delaware . Center for Composite Materials . Department of Civil and Environmental Engineering

Excellent flexural properties and limitless design options led to the selection of these panel types

- both the facesheets and stiffeners.
- each stiffener failure

These values were taken to be strengths

DESIGN STRENGTHS

# of Failed	Straight	Angled	Combination
Stiffeners	Design	Design	Design
1	8.397E-05	7.405E-05	1.162E-04
3	8.436E-05	7.408E-05	1.171E-04
5	8.529E-05	7.434E-05	1.192E-04
7	8.706E-05	7.518E-05	1.225E-04
9	9.014E-05	7.717E-05	1.277E-04
11	9.512E-05	8.103E-05	1.350E-04
13	1.026E-04	8.750E-05	1.452E-04

(Units - length*E)

Combination design clearly the strongest

Angled design was the weakest

NORMALIZED STRENGTH

# of Failed	Straight	Angled	Combination
Stiffeners	Design	Design	Design
1	5.598E-05	2.138E-05	2.276E-05
3	5.624E-05	2.139E-05	2.294E-05
5	5.686E-05	2.146E-05	2.335E-05
7	5.804E-05	2.170E-05	2.399E-05
9	6.009E-05	2.228E-05	2.501E-05
11	6.341E-05	2.339E-05	2.644E-05
13	6.840E-05	2.526E-05	2.844E-05

(Units - length*E/weight)

Normalized strength was determined by dividing the original strengths by the panel's weight

Straight design clearly the best

STRENGTH TRENDS

As more panels	Stiffeners	% Gain of
•	Failed	Strength
fail, the increase	1	
in strength gets	3	0.830
	5	1.732
larger. This trend	7	2.831
is seen in all three	9	4.182
designs	11	5.785
♦This is	13	7.510
V I I II 9 I 9		

attributed to the assumption that each stiffener retains its strength after reaching maximum capacity.

FUTURE WORK

We would like to make more accurate assumptions for the load distribution into the stiffeners and have a more realistic distributed load over the top facesheet.

This could be achieved through the use of computer software

ACKNOWLEDGEMENTS

This work has been supported by the Department of Defense (DoD) through the EPSCoR program. Thanks also goes to Dr. Righman McConnell for all of her help and effort that she has given to this research.