Penetration Mechanics of Soft Laminates and Fabrics

K. Ayotte (BME), Advisor: Bazle A. Gama (UD-CCM)

University of Delaware • Department of Mechanical Engineering and Center for Composite Materials

Abstract

The main objective of this research is to use QS-PST and Ballistic test methodology to understand the non-linear penetration damage mechanisms of soft laminates. Penetration mechanics of thick-section composites have been recently developed following a Quasi-Static Punch Shear Test (QS-PST) experimental methodology. Experiments are conducted at different support span to punch diameter ratios (SPR) under punch shear loading conditions to determine the penetration resistance force as a function of punch displacement. Experiments are also conducted for different laminate thickness (0.50-9.00 mm) to identify the penetration damage mechanisms as a function of laminate thickness. The Quasi-static penetration damage mechanisms are compared with ballistic penetration damage mechanisms, below and above the ballistic limit velocity of a 5.2-mm Ultra high molecular weight polyethylene (UHMWPE) laminate (20L = 464 m/s for a 44 grain 30cal projectile).

Materials and Processing

- Either UHMWPE shields are provided by the Army Research Laboratory with [0/90/0/90] sublamine architecture or compression molding in a hot press is used to fabricate 114.3-mm x 114.3-mm soft laminates of varying thicknesses.
- ARL laminates are received in 609.6-mm x 609.6-mm panels of 20 layers.
- Compression molded soft laminates are fabricated from 304.8-mm x 304.8-mm soft laminate sheets, oriented in [0/90/0/90] direction.
- Compression molding is done via hot press and following standards for fabrication of UHMWPE shields.

Approach

- Processing of soft laminates
- Quasi-static penetration testing
- Varying thickness
- Varying support spans
- Ballistic penetration testing
- Damage evaluation and comparison
- Analysis of experimental data

Quasi-Static Penetration Resistance (QS-PR): Function of SPR

- SPR changes with increasing thickness, pure shear deformation is observed. Analysis of experimental data is presented.
- Combined tension-shear deformation and failure is observed in the rear side.
- UHMWPE soft laminates can have both shear dominated and combined tension-shear dominated damage modes.

QS-PR: Function of STR

- As STR decreases with increasing thickness, pure shear deformation is observed. Analysis of experimental data is presented.
- Combined tension-shear deformation and failure is observed in the rear side.
- UHMWPE soft laminates can have both shear dominated and combined tension-shear dominated damage modes.

Ballistic Damage

- Ballistic Damage below V50: velocity, shear cutting of fibers, and physical disintegration of the laminate is observed up to the back face. The last layer of fibers showed that the projectile completely stopped and rebounded back from the soft laminate.
- Ballistic Damage above V50: the same damage mechanisms occurred as below V50 velocity with the only exception that all the sub-laminates showed shear cutting failure mode.

Ballistic Limit and QS-PST Energy

- The ballistic limit energy of the 20L soft laminate for a 0.30 caliber (44-grain) FSP can be calculated as E50 = 307 Joules.
- SPR for ballistic experiments is SPR = 13.33.
- Impact velocity (V0) and residual velocity (Vr) of the projectiles are measured using infrared velocity screens.

Conclusions

- There are 3 main damage modes for QS-PST: inter-laminar matrix damage, shear cutting of fibers, and combined tension-shear cutting/failure of fibers.
- There are 4 main damage modes for Ballistic tests: shear, shear cutting of fibers, physical inter-laminar disintegration, and wrinkles in the rear face of the soft laminate.

Acknowledgements

Funding for this work is provided by ARL-CMR MIPR (Soft Laminate). Special thanks to ARL-Pi, Rob Adkinson.