LIQUID COMPOSITE MOLDING PROCESS

Resin injection into a part with fabric

Resin flow simulations in a mold require knowledge of fabric permeability in all principal directions

LIQUID COMPOSITE MOLDING PROCESS

Resin injection into a part with fabric

Resin flow simulations in a mold require knowledge of fabric permeability in all principal directions

OBJECTIVE

- Develop an algorithm to determine the 3D permeability tensor of fibrous media from a single radial flow experiment.

\[\mathbf{u} = \left(\frac{\mathbf{K}}{\mu} \right) \nabla P \]

Darcy's Law

\[\mathbf{K} = \begin{bmatrix} K_{xx} & K_{xy} & K_{xz} \\ K_{yx} & K_{yy} & K_{yz} \\ K_{zx} & K_{zy} & K_{zz} \end{bmatrix} \]

Fabric Permeability Tensor

EXPERIMENTAL SET-UP DESCRIPTION

- Flow front information is acquired by electronic sensors that trigger when they come into contact with the fluid.
- Sensors are connected to a data acquisition system to acquire experimental flow front arrival times at the sensors.
- Two plates: top and bottom sensor plate with 96 electronic sensors embedded in each plate in a radial fashion, sandwich the fibrous media.

RESULTS

Woven E-glass fibrous media @ 45% v/f

- Experimental work with woven E-glass fibrous media to validate the approach.
- The effect of distribution media on the permeability of fibrous media needs to be investigated.

FUTURE WORK

- Experimental work with woven E-glass fibrous media to validate the approach.
- The effect of distribution media on the permeability of fibrous media needs to be investigated.

ACKNOWLEDGEMENTS

This work is funded by the National Science Foundation, grant number 0856399. We would also like to thank Justine Alms and Chad Phillips for their help.