Effect of Fiber Orientation on the Thorough Thickness Permeability of Unidirectional Fabrics

H. S. Sas (PhDME), E. B. Wurtzel, Dr. P. Simacek, Prof. S. G. Advani

University of Delaware . Center for Composite Materials . Department of Mechanical Engineering

INTRODUCTION

- Numerical simulations of composites require one to provide the permeability tensor of the preform
- A reliable and accurate method to characterize permeability is needed

Resin impregnation is modeled by Darcy's law:

$$u = -\left(\frac{K}{\mu}\right)\nabla P$$

Permeability tensor:

x', y': preform in-plane principle axis

EXPERIMENTAL SET-UP

Lower mold plate and sensor map nold plate and sensor map Preform in impregnation **Triggered sensors** K_{xx} K_{xy} K_{xz} $\mathbf{K} = \left| \begin{array}{ccc} \mathbf{K}_{yx} & \mathbf{K}_{yy} & \mathbf{K}_{yz} \end{array} \right|$ K_{zx} K_{zy} K_{zz}

MOTIVATION

Using uni-directional fabrics: Simulation of laminar viscous flow through open regions and fiber tows of a unit cell Slight misalignment during the stacking can change the through-thickness permeability Through thickness characterization; component ♦ Gambit is used for mesh generation, periodic characterization of through-thickness permeability
 boundary and domain settings of a series of uni-directional fabrics stacked in ANSYS Fluent is used for numerical solution various orientation pathways is crucial P = q(x, y) humerical and experimental analyses are
i $\boldsymbol{P} = \boldsymbol{f}(\boldsymbol{y}, \boldsymbol{z})$ $P = c(x, y) + \Delta P$ performed to predict the through-thickness permeability component Gambit model with each successive laver r degrees. Right-Gambit mesh of the model with periodic boundary conditions The cutout shows the mesh density. RESULTS **CONCLUSION AND FUTURE** RESULTS WORK Change in through thickness Experimental and numerical throughpermeability with increasing rotation The effect of changing ply orientation of thickness permeability characterization successive uni-directional fiber plies in the angle of the successive ply laminate on the through thickness permeability 2E-11 is investigated Experimental ckness ty (m²) Numerical model shows good agreement with Numerical experimental results Through Thick Permeability Influence of ply orientation and volume 1E-11 fraction of uni-directional fabric on transverse permeability can be explored with the 5E-12 numerical model. **ACKNOWLEDGEMENTS**

Planar Angular Configuration

© 2012, University of Delaware, all rights reserved

NUMERICAL IMPLEMENTATION

This work is funded by National Science Foundation grant number 0856399 under the supervision of Prof. Advani