MODELING OF THE AUTOMATIC THERMOPLASTIC TAPE PLACEMENT (ATP) PROCESS

Arthur Levy, Dirk Heider, John Tierney, Patrice Lefebure (EADS IW)

University of Delaware. Center for Composite Materials.

PROCESS PRINCIPLE

Two steps, out-of-autoclave, composite forming process.

- **Step 1**: Automatic placement of successive thermoplastic prepreg tape
- **Step 2**: Followed by consolidation under vacuum

Goal: Understand the link between process parameters and final quality of the laminate.

Method: Modeling and simulation of the main material and process physics

EXISTING CDS SIMULATION TOOL INCORPORATES MULTI-PHYSICS ATP MODEL

- Consolidation Model
 - Squeeze flow
 - Void growth
 - Adhesion of substrate
 - Laser and differing

- Temperature simulation (t, z) steady state

- Coupled bonding analysis
 - Laser and Spring
 - Intimate contact

- Chemical analysis
 - Crystallization
 - Degradation

IMPROVEMENT OF THE CODE

- **Optimization**: rewritten in Matlab
 - Use of vectors and matrices
 - Use of built-in routines (linear algebra, Runge Kutta, optimization)
 - CPU speed improvement: ~5 times faster

- **Process Adaptation**: to simulate EADS industrial head
 - Laser heating
 - Thermal contact resistance between layers
 - Highly deformable silicone roller. Solving the finite deformation using FEA

- **Embedding** of the code in an optimization framework

ONGOING WORK PROCESS OPTIMIZATION

Maximize process throughput for a given required quality
- Maximize head speed
- Consider quality improvement over multiple passes

Parameters: Velocity
Cost function: maximize velocity
Constraint: Good bonding
No degradation
Low void fraction

FUTURE WORK

Modeling the second step of consolidation under vacuum.

We first need to understand the physical phenomena that allow a reduction of voids.

ACKNOWLEDGEMENTS

We express our thanks to EADS IW for funding this research.

© 2011, University of Delaware, all rights reserved.