

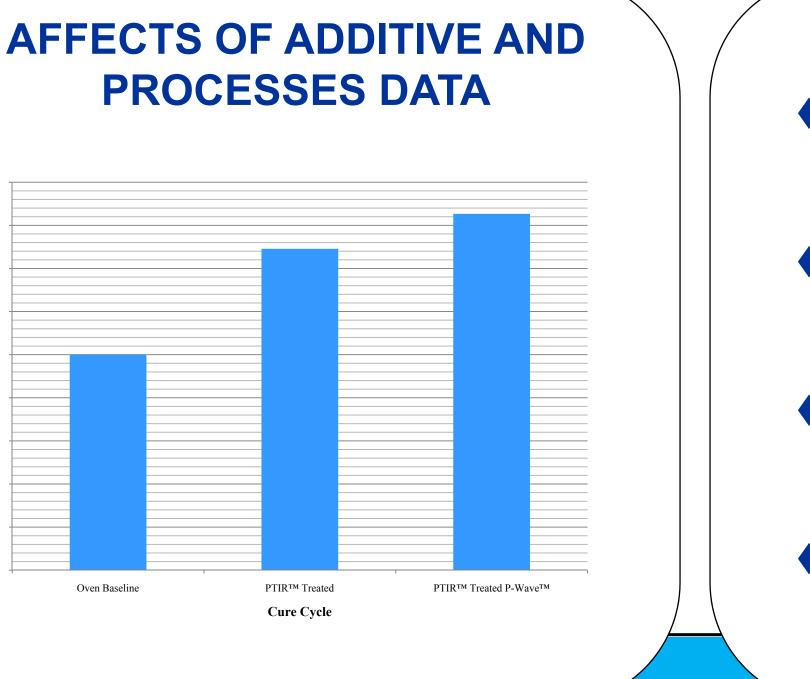
# **EPOXY COMPOSITE MATERIALS** J. Long (Kubota Research Associates Inc.) **ADHESIVE, SUBSTRATES, ACCELERATION TECHNIQUE, AND TESTS** ◆Magnobond<sup>™</sup> is a two part epoxy adhesive ♦ Room temperature shelf life ♦7 day room temperature cure ♦ 150°F - 250 °F for 1 hour elevated temperature cure Glass-Epoxy substrate chosen for testing ◆ PTIR<sup>™</sup> treatment with P-Wave<sup>™</sup> accelerated curing will be the main acceleration technique Test to be conducted ♦ Floating Roller Peel Test (ASTM D 3167-03a) ♦ Lap Shear Test (ASTM D 5868)

# **ACCELERATED ADHESION PROCESSES FOR GLASS FIBER** M. Kubota (Intern), S. Yarlagadda (Ph.D), M. Kubota (Kubota Research Associates Inc.), **University of Delaware . Center for Composite Materials . Department of Mechanical Engineering**

### PURPOSE

- Adhesion processes for glass fiber epoxy composite materials already exist.
- Accelerated adhesion process to reduced from 7 day cure to a few minutes without an oven needed to be researched.
- Accelerated adhesion process must not reduce the adhesive properties of the material chosen
- Magnobond (adhesive chosen) may be used in a full manufacturing environment along with on-base repair
- Down time for vehicles needing repair can be significantly reduced by accelerating the cure cycle of the adhesive
- Must follow NAVAIR repair procedure manual for surface preparation

### SAMPLE PROCESSING AND VARIABLES


Substrates made in the hot press under specified temperature and pressure

Adhesives cured under vacuum

- ♦7 day Room Temperature
- ♦ 150°F 250 °F for 1 hour elevated temperature cure

Variables include the following

- ♦PTIR<sup>™</sup> treatment for additive affects
- ♦P-Wave<sup>™</sup> for cure cycle



# CONCLUSIONS

- ◆ PTIR<sup>™</sup> treatment and it's additive does not decrease the peel strength of the adhesive
- Increase performance due to the PTIR<sup>™</sup> treatment mechanism is unknown
- Minor processing procedure must be changed to adapt for P-Wave<sup>™</sup> curing
- Further understand if this procedure meets specifications, lap shear



## **P-WAVE™ AND PTIR™**

◆P-Wave<sup>™</sup> is a system developed by Kubota **Research Associates Inc.** 

Emits high intensity near-infrared (NIR) radiation.

Radiation energy penetrates most polymeric materials allowing for maximum absorption of radiation to parts with PTIR<sup>™</sup> even when sandwiched between parts.

◆PTIR<sup>™</sup> is a treatment method developed by Kubota Research Associates Inc.

- ♦PTIR<sup>™</sup> treated resin allows for high absorption of the NIR radiation emitted by the P-Wave<sup>™</sup>
- ♦PTIR<sup>™</sup> method can potentially heat >10 times faster than conventional heating methods



- A 7 day cure sample is currently being made and should be tested
- Lap shear test for all samples must be conducted

### ACKNOWLEDGEMENTS

This work is supported by Kubota Research Associates Inc. through the Composite Materials Research program. Along with NAVAIR and Bell Helicopter Textron Inc.