ROLE OF FRICTION IN ULTRASONIC CONSOLIDATION DURING PROCESSING OF METAL MATRIX COMPOSITES

S. Koellhoffer (MSME), S. Advani, J. W. Gillespie, T. A. Bogetti (ARL)

University of Delaware Center for Composite Materials Department of Mechanical Engineering

MOTIVATIONS

- UC has the ability to make metal matrix composite parts
- MMC’s offer exceptionally high stiffness and strength
- Low temperature welding process
- Underlying science is not well understood
- Lack of process maturity
- Bonding mechanisms are temperature dependent

HEAT TRANSFER MECHANISMS

- Frictional heat
 - Slip at the interface
 - Interfacial heating
- Deformational heat
 - Plastic work
 - Volumetric heating

ANALYTIC FRICTION MODEL

\[
\frac{q}{ab} = \frac{\mu F}{2a} \left(\frac{H}{V} \right)
\]

EXPERIMENTAL RESULTS

- Constant \(\mu = 0.175 \)
- Avg Error 19%

EXPERIMENTAL PARAMETERS

<table>
<thead>
<tr>
<th>Test #</th>
<th>Amplitude (um)</th>
<th>Applied Force (N)</th>
<th>Speed (mm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.4</td>
<td>1162</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>12.4</td>
<td>874</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>18.4</td>
<td>1739</td>
<td>87</td>
</tr>
<tr>
<td>4</td>
<td>12.4</td>
<td>1451</td>
<td>123</td>
</tr>
<tr>
<td>5</td>
<td>9.4</td>
<td>874</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>15.4</td>
<td>874</td>
<td>111</td>
</tr>
<tr>
<td>7</td>
<td>9.4</td>
<td>1451</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>15.4</td>
<td>1451</td>
<td>87</td>
</tr>
</tbody>
</table>

FRICTION COEFFICIENT LITERATURE

- The friction coefficient for any material is very variable
- Typical friction coefficient values for aluminum are between 0.1 and 1.3
- Parameters present affecting \(\mu \)
 - Welder variables
 - Pressure
 - # Of cycles (time)
 - Slip amplitude
- Material properties
- Hardness
- Contact geometry
- Surface roughness

© 2009, University of Delaware, all rights reserved
ROLE OF FRICITION IN ULTRASONIC CONSOLIDATION DURING PROCESSING OF METAL MATRIX COMPOSITES

(Continued)

FRICITION COEFFICIENT VS. AMPLITUDE

- Literature (Naidu & Raman)
- **Response Surface Model**

FRICITION COEFFICIENT VS. FORCE

- Literature (Naidu & Raman)
- **Response Surface Model**

FRICITION COEFFICIENT VS. TIME

- Literature (Naidu & Raman)
- **Response Surface Model**

RESPONSE SURFACE MODEL

1. \(T = b_0 + \sum_{i=1}^{3} b_i x_i + \sum_{i=1}^{3} b_{ii} x_i^2 + \sum_{i=1}^{3} \sum_{j=1}^{3} b_{ij} x_i x_j \)

2. \(T = T_0 + \frac{\mu F}{H} \frac{2\lambda f}{H} + \frac{\mu F}{H} \frac{2\lambda f}{H} \)

\(x_1 = \frac{\lambda - 13.9}{4.5} \)

\(x_2 = \frac{\lambda - 1307}{433} \)

\(x_3 = \frac{\lambda - 105}{18} \)

Solve 1. and 2. for \(\mu \) to get:

\[\mu = f(b, \lambda, F, s) \]

VARIABLE \(\mu \) CONFIRMATION EXPERIMENT

<table>
<thead>
<tr>
<th>Test</th>
<th>(b)</th>
<th>(\lambda)</th>
<th>(F)</th>
<th>(s)</th>
<th>Response</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.5</td>
<td>1595</td>
<td>111</td>
<td>6</td>
<td>10.9</td>
<td>10.8</td>
</tr>
<tr>
<td>2</td>
<td>16.5</td>
<td>1018</td>
<td>99</td>
<td>7</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>3</td>
<td>16.5</td>
<td>1018</td>
<td>99</td>
<td>8</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>4</td>
<td>16.9</td>
<td>1307</td>
<td>87</td>
<td>9</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>5</td>
<td>16.9</td>
<td>1307</td>
<td>87</td>
<td>9</td>
<td>10.9</td>
<td>10.9</td>
</tr>
<tr>
<td>6</td>
<td>13.9</td>
<td>1595</td>
<td>67</td>
<td>7</td>
<td>12.3</td>
<td>12.3</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- Frictional heating can be isolated, measured experimentally (via IR camera) and modeled analytically
- Friction coefficient is a function of the welder parameters and follows the same trends as the literature
- Model prediction error can be greatly reduced if \(\mu = f(F, \lambda, s) \)
- \(~19\% \) if \(\mu \) is constant
- \(~8\% \) for parameter dependent \(\mu \)

ACKNOWLEDGEMENTS

This work is supported by the army research laboratory through the composite materials research program.

REFERENCES